Skip to main content
Log in

Corrosion behavior of Sn-based lead-free solder alloys: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn-based lead-free solder alloys have been investigated widely to replace the traditional Sn–Pb solder alloys. Since the miniaturization of electronic products and the expansion of application field, the corrosion resistance of solder alloys play a key factor in the reliability of electronic products in long-term service. In this article, we review the recent progress on the corrosion behavior of Sn-based lead-free solder alloys by summarizing the results in representative ones of Sn–Bi, Sn–Cu, Sn–Zn, Sn–Ag, Sn–Ag–Cu and other multi-elements lead-free solder alloys. Specifically, the relationship between microstructure morphology and corrosion behavior, the corrosion mechanism of Sn-based lead-free solder alloys after incorporation of alloy elements or particles are summarized. It is hoped that this overview will provide some useful information in clarifying the corrosion mechanism and development of lead-free solder alloys. Furthermore, remaining difficulties and future trends in this research field are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  1. S. Li, Y.F. Yan, Intermetallic growth study at Sn-3.0Ag-0.5Cu/Cu solder joint interface during different thermal conditions. J. Mater. Sci. Mater. Electron. 26, 9470–9477 (2015)

    CAS  Google Scholar 

  2. S. Zhang, B. Zhu, X. Zhou et al., Wettability and interfacial morphology of Sn-3.0Ag-0.5Cu solder on electroless nickel plated ZnS transparent ceramic. J. Mater. Sci. Mater. Electron. 30, 17972–17985 (2019)

    CAS  Google Scholar 

  3. S. Zhang, T. Lin, P. He et al., Effects of acrylic adhesives property and optimized bonding parameters on Sn58Bi solder joint morphology for flex-on-board assembly. Microelectron. Reliab. 78, 181–189 (2017)

    CAS  Google Scholar 

  4. M.Y. Xiong, L. Zhang, Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging. J. Mater. Sci. 54, 1741–1768 (2019)

    CAS  Google Scholar 

  5. K.L. Lin, F.C. Chung, T.P. Liu, The potentiodynamic polarization behavior of Pb-free XIn-9(5Al-Zn)-YSn solders. Mater. Chem. Phys. 53, 55–59 (1998)

    CAS  Google Scholar 

  6. L.C. Tsao, Corrosion characterization of Sn37Pb solders and with Cu substrate soldering reaction in 3.5wt.% NaCl solution. In: 2009 International Conference on Electronic Packaging Technology & High Density Packaging, 2009, pp. 1164–1166.

  7. B. Liu, T.K. Lee, K.C. Liu, Impact of 5% NaCl salt spray pretreatment on the long-term reliability of wafer-level packages with Sn-Pb and Sn-Ag-Cu solder interconnects. J. Electron. Mater. 40, 2111–2118 (2011)

    CAS  Google Scholar 

  8. L.M. Satizabal, D. Costa, P.B. Moraes et al., Microstructural array and solute content affecting electrochemical behavior of Sn Ag and Sn Bi alloys compared with a traditional Sn Pb alloy. Mater. Chem. Phys. 223, 410–425 (2019)

    CAS  Google Scholar 

  9. M.A. Fazal, N.K. Liyana, S. Rubaiee et al., A critical review on performance, microstructure and corrosion resistance of Pb-free solders. Measurement 134, 897–907 (2019)

    Google Scholar 

  10. H.A. Jaffery, M.F.M. Sabri, S.M. Said et al., Electrochemical corrosion behavior of Sn-0.7Cu solder alloy with the addition of bismuth and iron. J. Alloys Compd. 810, 151925 (2019)

    CAS  Google Scholar 

  11. P. Tunthawiroon, K. Kanlayasiri, Effects of Ag contents in Sn-xAg lead-free solders on microstructure, corrosion behavior and interfacial reaction with Cu substrate. Trans. Nonferr. Met. Soc. 29, 1696–1704 (2019)

    CAS  Google Scholar 

  12. F. Mohd Nazeri Muhammad, Z. Yahaya Muhamad, A. Gursel et al., Corrosion characterization of Sn-Zn solder: a review. Solder. Surf. Mater. Technol. 31, 52–67 (2019)

    Google Scholar 

  13. Z. Hou, T. Niu, X. Zhao et al., Intermetallic compounds formation and joints properties of electroplated Sn-Zn solder bumps with Cu substrates. J. Mater. Sci. Mater. Electron. 30, 1–9 (2019)

    Google Scholar 

  14. M.I.I. Ramli, M.A.A.M. Salleh, H. Yasuda, et al., The effect of Bi on the microstructure, electrical, wettability and mechanical properties of Sn-0.7Cu-0.05Ni alloys for high strength soldering. Mater. Design 186, (2020).

  15. M. Hasnine, M.J. Bozack, Effects of Ga additives on the thermal and wetting performance of Sn-0.7Cu solder. J. Electron. Mater. 48, 3970–3978 (2019)

    CAS  Google Scholar 

  16. S. Tian, S. Li, J. Zhou et al., Thermodynamic characteristics, microstructure and mechanical properties of Sn-0.7Cu-xIn lead-free solder alloy. J. Alloys Compd. 742, 835–843 (2018)

    CAS  Google Scholar 

  17. H. Ma, A. Kunwar, Z. Liu et al., Shielding effect of Ag3Sn on growth of intermetallic compounds in isothermal heating and cooling during multiple reflows. J. Mater. Sci. Mater. Electron. 29, 4383–4390 (2018)

    CAS  Google Scholar 

  18. L. Zhang, Z.Q. Liu, Inhibition of intermetallic compounds growth at Sn-58Bi/Cu interface bearing CuZnAl memory particles (2~6μm). J. Mater. Sci. Mater. Electron. 31, 2466–2480 (2020)

    CAS  Google Scholar 

  19. Z. Wang, Q.K. Zhang, Y.X. Chen et al., Influences of Ag and In alloying on Sn-Bi eutectic solder and SnBi/Cu solder joints. J. Mater. Sci. Mater. Electron. 30, 18524–18538 (2019)

    CAS  Google Scholar 

  20. N. Jiang, L. Zhang, Z.Q. Liu et al., Influences of doping Ti nanoparticles on microstructure and properties of Sn58Bi solder. J. Mater. Sci. Mater. Electron. 30, 17583–17590 (2019)

    CAS  Google Scholar 

  21. J. Wu, S. Xue, J. Wang et al., Effect of in-situ formed Pr-coated Al2O3 nanoparticles on interfacial microstructure and shear behavior of Sn-03Ag-07Cu-006Pr/Cu solder joints during isothermal aging. J. Alloys Compd. 799, 124–136 (2019)

    CAS  Google Scholar 

  22. Z. Zhang, X. Hu, X. Jiang, Y. Li, Influences of mono-Ni(P) and dual-Cu/Ni(P) plating on the interfacial microstructure evolution of solder joints. Metall. Mater. Trans. A 50, 480–492 (2019)

    CAS  Google Scholar 

  23. W.K. Lee, X. Ning, C.B. Ke et al., Current density dependent shear performance and fracture behavior of micro-scale BGA structure Cu/Sn-3.0Ag-0.5Cu/Cu joints under coupled electromechanical loads. J. Mater. Sci. Mater. Electron. 30, 15184–15197 (2019)

    Google Scholar 

  24. A.K. Gain, L. Zhang, Growth nature of in-situ Cu6Sn5-phase and their influence on creep and damping characteristics of Sn-Cu material under high-temperature and humidity. Microelectron. Reliab. 87, 278–285 (2018)

    CAS  Google Scholar 

  25. T.K. Yeh, K.L. Lin, U.S. Mohanty, Effect of Ag on the microstructure of Sn-8.5Zn-xAg-0.01Al-0.1Ga solders under high-temperature and high-humidity conditions. J. Electron. Mater. 42, 616–627 (2013)

    CAS  Google Scholar 

  26. M. Wang, J. Wang, H. Feng et al., Effect of Ag3Sn intermetallic compounds on corrosion of Sn-3.0Ag-0.5Cu solder under high-temperature and high-humidity condition. Corros. Sci. 63, 20–28 (2012)

    CAS  Google Scholar 

  27. K. Yokoyama, A. Nogami, J. Sakai, Creep corrosion cracking of Sn-3.0Ag and Sn-0.5Cu solder alloys in NaCl solution. Corros. Sci. 86, 142–148 (2014)

    CAS  Google Scholar 

  28. Y.F. Gao, C.F. Cheng, J. Zhao et al., Electrochemical corrosion of Sn-0.75Cu solder joints in NaCl solution. Trans. Nonferr. Met. Soc. 22, 977–982 (2012)

    CAS  Google Scholar 

  29. R.B. Comizzoli, R.P. Frankenthal, P.C. Milner et al., Corrosion of electronic materials and devices. Science 234, 340–345 (1986)

    CAS  Google Scholar 

  30. J.C. Liu, Z.H. Wang, J.Y. Xie et al., Understanding corrosion mechanism of Sn-Zn alloys in NaCl solution via corrosion products characterization. Mater. Corros. 67, 522–530 (2016)

    CAS  Google Scholar 

  31. J.C. Liu, Z.H. Wang, J.Y. Xie et al., Effects of intermetallic-forming element additions on microstructure and corrosion behavior of Sn-Zn solder alloys. Corros. Sci. 112, 150–159 (2016)

    CAS  Google Scholar 

  32. M. Wang, J. Wang, H. Feng et al., Effects of microstructure and temperature on corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder. J. Mater. Sci. Mater. Electron. 23, 148–155 (2011)

    Google Scholar 

  33. Z. Yan, A.P. Xian, Pitting corrosion behavior of Sn-0.7Cu lead-free alloy in simulated marine atmospheric enviroment and the effect of trace Ga. Acta Metal. Sin. 47, 1327–1334 (2011)

    CAS  Google Scholar 

  34. Z. Yan, A.P. Xian, Initial corrosion behavior of Sn and Sn-3Ag-0.5Cu alloy exposed in atmospheric environment of Shenyang. Chin. J. Nonfer. Met. 22, 1398–1406 (2012)

    CAS  Google Scholar 

  35. B. Liao, H. Cen, Z. Chen et al., Corrosion behavior of Sn-3.0Ag-0.5Cu alloy under chlorine-containing thin electrolyte layers. Corros. Sci. 143, 347–361 (2018)

    CAS  Google Scholar 

  36. X.K. Zhong, G.A. Zhang, Y.B. Qiu et al., The corrosion of tin under thin electrolyte layers containing chloride. Corros. Sci. 66, 14–25 (2013)

    CAS  Google Scholar 

  37. Z. Wang, C. Chen, J. Liu et al., Corrosion mechanism of Zn-30Sn high-temperature, lead-free solder in neutral NaCl solution. Corros. Sci. 140, 40–50 (2018)

    CAS  Google Scholar 

  38. J.C. Liu, G. Zhang, Effect of trace Mn modification on the microstructure and corrosion behavior of Sn-9Zn solder alloy. Mater. Corros. 69, 781–792 (2018)

    CAS  Google Scholar 

  39. Z. Wang, C. Chen, J. Jiu et al., Electrochemical behavior of Sn-9Zn-xTi lead-free solders in neutral 0.5M NaCl solution. J. Mater. Eng. Perform. 27, 2182–2191 (2018)

    CAS  Google Scholar 

  40. Z. Wang, C. Chen, J. Jiu et al., Electrochemical behavior of Zn- x Sn high-temperature solder alloys in 0.5 M NaCl solution. J. Alloys Compd. 716, 231–239 (2017)

    CAS  Google Scholar 

  41. D. Li, P.P. Conway, C. Liu, Corrosion characterization of tin-lead and lead free solders in 3.5 wt% NaCl solution. Corros. Sci. 50, 995–1004 (2008)

    CAS  Google Scholar 

  42. H. Huang, G. Shuai, X. Wei et al., Effects of sulfur addition on the wettability and corrosion resistance of Sn-0.7Cu lead-free solder. Microelectron. Reliab. 74, 15–21 (2017)

    CAS  Google Scholar 

  43. H. Wang, Z. Gao, Y. Liu et al., Evaluation of cooling rate on electrochemical behavior of Sn-0.3Ag-0.9Zn solder alloy in 3.5wt% NaCl solution. J. Mater. Sci. Mater. Electron. 26, 11–22 (2014)

    CAS  Google Scholar 

  44. N.W.B. Subri, M. Sarraf, B. Nasiri-Tabrizi et al., Corrosion insight of iron and bismuth added Sn-1Ag-0.5Cu lead-free solder alloy. Corros. Eng. Sci. Techn. 55, 35–47 (2020)

    CAS  Google Scholar 

  45. N.K. Liyana, M.A. Fazal, A.S.M.A. Haseeb et al., Effect of Zn incorporation on the electrochemical corrosion properties of SAC105 solder alloys. J. Mater. Sci. Mater. Electron. 30, 7415–7422 (2019)

    CAS  Google Scholar 

  46. M. Fayeka, M.A. Fazal, A.S.M.A. Haseeb, Effect of aluminum addition on the electrochemical corrosion behavior of Sn-3Ag-0.5Cu solder alloy in 3.5wt% NaCl solution. J. Mater. Sci. Mater. Electron. 27, 12193–12200 (2016)

    CAS  Google Scholar 

  47. M. Liu, W. Yang, Y. Ma et al., The electrochemical corrosion behavior of Pb-free Sn-8.5Zn-XCr solders in 3.5 wt.% NaCl solution. Mater. Chem. Phys. 168, 27–34 (2015)

    CAS  Google Scholar 

  48. M. Wang, J. Wang, W. Ke, Corrosion behavior of Sn-3.0Ag-0.5Cu solder under high-temperature and high-humidity condition. J. Mater. Sci. Mater. Electron. 25, 1228–1236 (2014)

    CAS  Google Scholar 

  49. M. Wang, J. Wang, W. Ke, Effect of microstructure and Ag3Sn intermetallic compounds on corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder. J. Mater. Sci. Mater. Electron. 25, 5269–5276 (2014)

    CAS  Google Scholar 

  50. X. Zhong, G. Zhang, X. Guo, The effect of electrolyte layer thickness on electrochemical migration of tin. Corros. Sci. 96, 1–5 (2015)

    CAS  Google Scholar 

  51. X. Zhong, G. Zhang, Y. Qiu et al., Electrochemical migration of tin in thin electrolyte layer containing chloride ions. Corros. Sci. 74, 71–82 (2013)

    CAS  Google Scholar 

  52. T.C. Chang, M.H. Hon, M.C. Wang et al., Electrochemical behaviors of the Sn-9Zn-xag lead-free solders in a 3.5 wt % NaCl solution. J. Electrochem. Soc. 151, C484 (2004)

    CAS  Google Scholar 

  53. M.F.M. Nazeri, A.A. Mohamad, Effect of exposure to alkaline solution on Sn-9Zn solder joints. J. Mater. Process. Technol. 219, 164–172 (2015)

    CAS  Google Scholar 

  54. M. Grobelny, N. Sobczak, Effect of pH of sulfate solution on electrochemical behavior of Pb-Free solder candidates of SnZn and SnZnCu systems. J. Mater. Eng. Perform. 21, 614–619 (2012)

    CAS  Google Scholar 

  55. S. Farina, C. Morando, Comparative corrosion behaviour of different Sn-based solder alloys. J. Mater. Sci. Mater. Electron. 26, 464–471 (2014)

    Google Scholar 

  56. J.C. Liu, S. Park, S. Nagao et al., The role of Zn precipitates and Cl- anions in pitting corrosion of Sn-Zn solder alloys. Corros. Sci. 92, 263–271 (2015)

    CAS  Google Scholar 

  57. J.C. Liu, G. Zhang, S. Nagao et al., Metastable pitting and its correlation with electronic properties of passive films on Sn-xZn solder alloys. Corros. Sci. 99, 154–163 (2015)

    CAS  Google Scholar 

  58. J.C. Liu, G. Zhang, J.S. Ma et al., Ti addition to enhance corrosion resistance of Sn-Zn solder alloy by tailoring microstructure. J. Alloys Compd. 644, 113–118 (2015)

    CAS  Google Scholar 

  59. M.F. Mohd Nazeri, A.A. Mohamad, Corrosion resistance of ternary Sn-9Zn-xIn solder joint in alkaline solution. J. Alloys Compd. 661, 516–525 (2016)

    CAS  Google Scholar 

  60. H. Wang, S.B. Xue, W.X. Chen et al., Effects of Ga and Al additions on corrosion resistance and high-temperature oxidation resistance of Sn-9Zn lead-free solder. Rare Metal. Mat. Eng. 38, 2187–2190 (2009)

    CAS  Google Scholar 

  61. M.F.M. Nazeri, A.A. Mohamad, Corrosion measurement of Sn-Zn lead-free solders in 6 M KOH solution. Measurement 47, 820–826 (2014)

    Google Scholar 

  62. M.F.M. Nazeri, A.B. Ismail, A.A. Mohamad, Effect of polarizations on Sn-Zn solders alloys in alkaline electrolyte. J. Alloys Compd. 606, 278–287 (2014)

    CAS  Google Scholar 

  63. X.K. Zhong, L.J. Chen, B. Medgyes et al., Electrochemical migration of Sn and Sn solder alloys: a review. RSC Adv. 7, 28186–28206 (2017)

    CAS  Google Scholar 

  64. Q. Li, X. Liu, S. Lu, Corrosion behavior assessment of tin-lead and lead free solders exposed to fire smoke generated by burning polyvinyl chloride. Mater. Chem. Phys. 212, 298–307 (2018)

    CAS  Google Scholar 

  65. W.R. Osório, J.E. Spinelli, C.R.M. Afonso et al., Microstructure, corrosion behaviour and microhardness of a directionally solidified Sn-Cu solder alloy. Electrochim. Acta 56, 8891–8899 (2011)

    Google Scholar 

  66. W.R. Osório, E.S. Freitas, J.E. Spinelli et al., Electrochemical behavior of a lead-free Sn-Cu solder alloy in NaCl solution. Corros. Sci. 80, 71–81 (2014)

    Google Scholar 

  67. E.S. Freitas, W.R. Osório, J.E. Spinelli et al., Mechanical and corrosion resistances of a Sn-0.7wt%Cu lead-free solder alloy. Microelectron. Reliab. 54, 1392–1400 (2014)

    CAS  Google Scholar 

  68. W. Yang, Z. Du, S. Yu et al., The effect of rare earths additions on the microstructure and the corrosion behavior of Sn-0.7Cu-0.075Al solder alloy. Materials 12, 3731 (2019)

    CAS  Google Scholar 

  69. H.Z. Huang, D. Lu, G.W. Shuai et al., Effects of phosphorus addition on the corrosion resistance of Sn-0.7Cu lead-free solder alloy. T. Indian. I. Metals 69, 1537–1543 (2016)

    CAS  Google Scholar 

  70. Z. Yan, A.P. Xian, Corrosion of Ga-doped Sn-0.7Cu solder in simulated marine atmosphere. Metall. Mater. Trans. A 44, 1462–1474 (2012)

    Google Scholar 

  71. A.K. Gain, L. Zhang, Thermal aging effects on microstructure, elastic property and damping characteristic of a eutectic Sn-3.5Ag solder. J. Mater. Sci. Mater. Electron. 29, 14519–14527 (2018)

    CAS  Google Scholar 

  72. S. Liu, W. Xiong, J. Xiong et al., Refinement mechanism of Bi addition on the microstructure of rapidly solidified Sn-3.5Ag eutectic solder for microelectronic packaging. J. Electron. Mater. 47, 5588–5594 (2018)

    CAS  Google Scholar 

  73. J. Li, J. Dai, C.M. Johnson, Comparison of power cycling reliability of flexible PCB interconnect smaller/thinner and larger/thicker power devices with topside Sn-3.5Ag solder joints. Microelectron. Reliab. 84, 55–65 (2018)

    CAS  Google Scholar 

  74. Q.V. Bui, N.D. Nam, B.I. Noh et al., Effect of Ag addition on the corrosion properties of Sn-based solder alloys. Mater. Corros. 61, 30–33 (2010)

    CAS  Google Scholar 

  75. M.A. Ameer, A.A. Ghoneim, A.M. Fekry, The electrochemical behavior of Sn-Ag binary alloys in sulfate solutions. Mater. Corros. 61, 580–589 (2010)

    CAS  Google Scholar 

  76. M.A. Ameer, A.M. Fekry, A.A. Ghoniem, Electrochemical behavior of Sn-Ag alloys in alkaline solutions. Corrosion 65, 587–594 (2009)

    CAS  Google Scholar 

  77. F. Ochoa, J.J. Williams, N. Chawla, Effects of cooling rate on the microstructure and tensile behavior of a Sn-3.5wt.%Ag solder. J. Electron. Mater. 32, 1414–1420 (2003)

    CAS  Google Scholar 

  78. J. Shen, Y.C. Liu, Y.J. Han et al., Effects of cooling rates on microstructure and microhardness of lead-free Sn-3.5% Ag solders. Trans. Nonferr. Met. Soc. 16, 59–64 (2006)

    CAS  Google Scholar 

  79. L.R. Garcia, W.R. Osório, A. Garcia, The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy. Mater. Design 32, 3008–3012 (2011)

    CAS  Google Scholar 

  80. X. Liu, M. Huang, Y. Zhao et al., The adsorption of Ag3Sn nano-particles on Cu-Sn intermetallic compounds of Sn-3Ag-0.5Cu/Cu during soldering. J. Alloys Compd. 492, 433–438 (2010)

    CAS  Google Scholar 

  81. W.R. Osório, L.R. Garcia, L.C. Peixoto et al., Electrochemical behavior of a lead-free SnAg solder alloy affected by the microstructure array. Mater. Design 32, 4763–4772 (2011)

    Google Scholar 

  82. B.X. Vuong, N.S.H. Vu, T.D. Manh et al., Role of cerium in microstructure and corrosion properties of Sn-1.0Ag solder alloys. Mater. Lett. 228, 309–313 (2018)

    CAS  Google Scholar 

  83. A. Sharma, S. Das, K. Das, Electrochemical corrosion behavior of CeO2 nanoparticle reinforced Sn-Ag based lead free nanocomposite solders in 3.5 wt% NaCl bath. Surf. Coat. Technol. 261, 235–243 (2015)

    CAS  Google Scholar 

  84. F. Rosalbino, E. Angelini, G. Zanicchi et al., Corrosion behaviour assessment of lead-free Sn-Ag-M (M=In, Bi, Cu) solder alloys. Mater. Chem. Phys. 109, 386–391 (2008)

    CAS  Google Scholar 

  85. X. Li, Y. Ma, W. Zhou et al., Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys. Mater. Sci. Eng. A 684, 328–334 (2017)

    CAS  Google Scholar 

  86. M. Mostofizadeh, J. Pippola, L. Frisk, Reliability and shear strength of 42Sn-57Bi-1Ag (wt.%) lead-free solder joints after thermal aging and salt spray testing. In: 2013 IEEE 63rd Electronic Components and Technology Conference, 2013, pp. 1010–1017.

  87. L.M. Satizabal, E. Poloni, A.D. Bortolozo et al., Immersion corrosion of Sn-Ag and Sn-Bi alloys as successors to Sn-Pb alloy with electronic and jewelry applications. Corrosion 72, 1064–1080 (2016)

    CAS  Google Scholar 

  88. M. Mostofizadeh, J. Pippola, T. Marttila et al., Effect of thermal aging and salt spray testing on reliability and mechanical strength of Sn-58Bi lead-free solder. IEEE T. Comp. Pack. Man. 3, 1778–1785 (2013)

    CAS  Google Scholar 

  89. X. Qiang, L. Nguyen, W.D. Armstrong, Anomalously high tensile creep rates from thin cast Sn3.9Ag0.6Cu lead-free solder. J. Electron. Mater. 34, 1065-1075.

  90. J.P. Tucker, D.K. Chan, G. Subbarayan et al., Maximum entropy fracture model and its use for predicting cyclic hysteresis in Sn3.8Ag0.7Cu and Sn3.0Ag0.5 solder alloys. Microelectron. Reliab. 54, 2513–2522 (2014)

    CAS  Google Scholar 

  91. D. Chan, X. Nie, D. Bhate et al., Constitutive models for intermediate-and high-strain rate flow behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu solder alloys. IEEE T. Comp. Pack. Man. 3, 133–146 (2013)

    CAS  Google Scholar 

  92. M.N. Wang, J.Q. Wang, W. Ke, Corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder joints. Microelectron. Reliab. 73, 69–75 (2017)

    CAS  Google Scholar 

  93. C.W. See, M.Z. Yahaya, H. Haliman et al., Corrosion behavior of corroded Sn-3.0Ag-0.5Cu solder alloy. Procedia Chem 19, 847–854 (2016)

    CAS  Google Scholar 

  94. F. Rosalbino, G. Zanicchi, R. Carlini et al., Electrochemical corrosion behaviour of Sn-Ag-Cu (SAC) eutectic alloy in a chloride containing environment. Mater. Corros. 63, 492–496 (2012)

    CAS  Google Scholar 

  95. F. Rosalbino, E. Angelini, G. Zanicchi et al., Electrochemical corrosion study of Sn-3Ag-3Cu solder alloy in NaCl solution. Electrochim. Acta 54, 7231–7235 (2009)

    CAS  Google Scholar 

  96. L. Hua, C. Yang, Corrosion behavior, whisker growth, and electrochemical migration of Sn-3.0Ag-0.5Cu solder doping with In and Zn in NaCl solution. Microelectron. Reliab. 51, 2274–2283 (2011)

    CAS  Google Scholar 

  97. N.I.M. Nordin, S.M. Said, R. Ramli et al., Impact of aluminium addition on the corrosion behaviour of Sn-1.0Ag-0.5Cu lead-free solder. Rsc Adv 5, 99058–99064 (2015)

    CAS  Google Scholar 

  98. U.S. Mohanty, K.-L. Lin, Corrosion behavior of Pb-free Sn-1Ag-0.5Cu-XNi Solder Alloys in 3.5% NaCl Solution. J. Electron. Mater. 42, 628–638 (2013)

    CAS  Google Scholar 

  99. L.Y. Xu, Z.K. Zhang, H.Y. Jing et al., Effect of graphene nanosheets on the corrosion behavior of Sn-Ag-Cu solders. J. Mater. Sci. Mater. Electron. 26, 5625–5634 (2015)

    CAS  Google Scholar 

  100. Y.D. Han, L. Chen, H.Y. Jing et al., Effect of Ni-Coated carbon nanotubes on the corrosion behavior of Sn-Ag-Cu solder. J. Electron. Mater. 42, 3559–3566 (2013)

    CAS  Google Scholar 

  101. W. Jie, X. Songbai, W. Jingwen et al., Enhancement on the high-temperature joint reliability and corrosion resistance of Sn-0.3Ag-0.7Cu low-Ag solder contributed by Al2O3 Nanoparticles (0.12 wt%). J. Mater. Sci. Mater. Electron. 29, 19663–19677 (2018)

    CAS  Google Scholar 

  102. A.A. El-Daly, K.M. Zohdy, M. Ragab, Corrosion and electrochemical behavior of Sn-2Ag-0.5Cu lead-free solders solidified with magnet stirring. J. Mater. Eng. Perform. 28, 4680–4692 (2019)

    CAS  Google Scholar 

  103. T.K. Lee, B. Liu, B. Zhou et al., Correlation between sn grain orientation and corrosion in Sn-Ag-Cu solder interconnects. J. Electron. Mater. 40, 1895–1902 (2011)

    CAS  Google Scholar 

  104. M. Wang, J. Wang, H. Feng et al., In-situ observation of fracture behavior of Sn-3.0Ag-0.5Cu lead-free solder during three-point bending tests in ESEM. Mater. Sci. Eng. A 558, 649–655 (2012)

    CAS  Google Scholar 

  105. R.K. Kaushik, U. Batra, J.D. Sharma, Aging induced structural and electrochemical corrosion behaviour of Sn-1.0Ag-0.5Cu and Sn-3.8Ag-0.7Cu solder alloys. J. Alloys Compd. 745, 446–454 (2018)

    CAS  Google Scholar 

  106. U.S. Mohanty, K.-L. Lin, Electrochemical corrosion behaviour of lead-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution. Mater. Sci. Eng.: A 406, 34-42 (2005).

  107. U.S. Mohanty, K.-L. Lin, The polarization characteristics of Pb-free Sn-8.5Zn-XAg-0.1Al-0.05Ga alloy in 3.5% NaCl solution. Corros. Sci. 49, 2815-2831 (2007).

  108. U.S. Mohanty, K.-L. Lin, Effect of Al on the electrochemical corrosion behaviour of Pb free Sn-8.5 Zn-0.5 Ag-XAl-0.5 Ga solder in 3.5% NaCl solution. Appl. Surf. Sci. 252, 5907-5916 (2006).

  109. U.S. Mohanty, K.-L. Lin, The effect of alloying element gallium on the polarization characteristics of Pb-free Sn-Zn-Ag-Al-XGa solders in NaCl solution. Corros. Sci. 48, 662–678 (2006)

    CAS  Google Scholar 

  110. T.C. Chang, J.W. Wang, M.C. Wang et al., Solderability of Sn-9Zn-0.5Ag-1In lead-free solder on Cu substrate. J. Alloys Compd. 422, 239–243 (2006)

    CAS  Google Scholar 

  111. J. Hu, T. Luo, A. Hu et al., Electrochemical corrosion behaviors of Sn-9Zn-3Bi-xCr solder in 3.5% NaCl solution. J. Electron. Mater. 40, 1556–1562 (2011)

    CAS  Google Scholar 

  112. K.L. Lin, T.P. Liu, The electrochemical corrosion behaviour of Pb-free Al-Zn-Sn solders in NaCl solution. Mater. Chem. Phys. 56, 171–176 (1998)

    CAS  Google Scholar 

  113. M.L. Huang, N. Kang, Q. Zhou et al., Effect of Ni content on mechanical properties and corrosion behavior of Al/Sn-9Zn-xNi/Cu joints. J. Mater. SCI. Technol. 28, 844–852 (2012)

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Research Foundation for High-level talent Scholars in North China University of Water Resources and Electric Power (No. 201811034) and Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials (No. HKDNM2019020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, X., Liu, Z. et al. Corrosion behavior of Sn-based lead-free solder alloys: a review. J Mater Sci: Mater Electron 31, 9076–9090 (2020). https://doi.org/10.1007/s10854-020-03540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03540-2

Navigation