Skip to main content
Log in

Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3–BaTiO3 high temperature piezoceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In current work, the effect of sintering atmospheres (N2, air and O2) on the structure, electrical properties, and defect mechanism of 0.8BiFeO3–0.2BaTiO3 lead-free piezoelectric ceramics has been investigated. X-ray diffractometer results indicated all the samples crystallized into the rhombohedrally distorted perovskite structure which was independent on the sintering atmospheres. Bi-containing impurity phases were observed in N2 sintered samples while not appearing in other atmospheres. X-ray photoelectron spectrum analysis indicated more Fe2+ ions, which can result in high leakage current, were involved in N2 sintered ceramics than that in O2- and air sintered compositions. However, greatly reduced leakage currents were obtained in N2 sintered ceramics which should be ascribed to the formation of secondary phases. The largest polarization and lowest leakage current were obtained in the sample sintered in N2 (2 h), which owned the optimal ferroelectric, piezoelectric, and electromechanical properties with piezoelectric constant d 33 = 98 pC/N, planar electromechanical coupling factors k p = 26.1 %, remnant polarization P r = 25.7 µC/cm2, coercive field E c = 74.6 kV/cm, and a high Curie temperature T c = 632 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  2. S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, K. Wakino, IEEE Trans. Microw. Theor. Tech. MTT-50, 706 (2002)

    Article  Google Scholar 

  3. A. Nishino, J. Power Sources 60, 137 (1996)

    Article  Google Scholar 

  4. J. Watson, G. Castro, IEEE Trans. Electron. Packag. Manuf. 27, 164 (2004)

    Article  Google Scholar 

  5. I. Sosnowskat, T. Peterlin-Neumaier, E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982)

    Article  Google Scholar 

  6. R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, Phys. Rev. B 77, 014110 (2008)

    Article  Google Scholar 

  7. F.P. Gheorghiu, A. Ianculescu, P. Postolache, N. Lupu, M. Dobromir, D. Luca, L. Mitoseriu, J. Alloys Compd. 506, 862 (2010)

    Article  Google Scholar 

  8. C. Guo, S. Pu, Z.L. Chen, M.Y. Li, J.F. Cao, H.M. Zou, Ceram. Int. 36, 507 (2010)

    Article  Google Scholar 

  9. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  Google Scholar 

  10. G.L. Yuan, S.W. Or, Y.P. Wang, Z.G. Liu, J.M. Liu, Solid State Commun. 138, 76 (2006)

    Article  Google Scholar 

  11. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  Google Scholar 

  12. H. Uchida, R. Ueno, H. Funakubo, S. Koda, J. Appl. Phys. 100, 014106 (2006)

    Article  Google Scholar 

  13. A. Kumar, D. Varshney, Ceram. Int. 38, 3935 (2012)

    Article  Google Scholar 

  14. C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 25, 2086 (2014)

    Google Scholar 

  15. H.R. Liu, Y.X. Sun, J. Phys. D Appl. Phys. 40, 7530 (2007)

    Article  Google Scholar 

  16. Y.K. Jun, W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, S.H. Hong, Solid State Commun. 135, 133 (2005)

    Article  Google Scholar 

  17. H.X. Ning, Y. Lin, X.B. Hou, L.L. Zhang, J. Mater. Sci.: Mater. Electron. 25, 1162 (2014)

    Google Scholar 

  18. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 95, 670 (2012)

    Article  Google Scholar 

  19. L.H. Yin, B.C. Zhao, J. Fang, R.R. Zhang, X.W. Tang, W.H. Song, J.M. Dai, Y.P. Sun, J. Solid State Chem. 194, 194 (2012)

    Article  Google Scholar 

  20. J.G. Chen, J.R. Cheng, J. Alloys Compd. 589, 115 (2014)

    Article  Google Scholar 

  21. F. Yan, T.J. Zhu, M.O. Lai, L. Lu, Appl. Phys. A 101, 651 (2010)

    Article  Google Scholar 

  22. K. Prashanthi, M. Gupta, Y.Y. Tsui, T. Thundat, Appl. Phys. A 110, 903 (2013)

    Article  Google Scholar 

  23. K.Y. Yun, M. Noda, M. Okuyama, Appl. Phys. Lett. 83, 3981 (2003)

    Article  Google Scholar 

  24. S. Iakovlev, C.H. Solterbeck, M. Kuhnke, M. Es-Souni, J. Appl. Phys. 97, 094901 (2005)

    Article  Google Scholar 

  25. H.Y. Dai, Z.P. Chen, T. Li, R.Z. Xue, J. Chen, J Supercond. Nov. Magn. 26, 3125 (2013)

    Article  Google Scholar 

  26. F.Z. Huang, X.M. Lu, Z. Wang, W.W. Lin, Y. Kan, H.F. Bo, W. Cai, J.S. Zhu, Appl. Phys. A 97, 699 (2009)

    Article  Google Scholar 

  27. V.R. Singh, A. Dixit, A. Garg, D.C. Agrawal, Appl. Phys. A 90, 197 (2008)

    Article  Google Scholar 

  28. ANSI/IEEE 176-1987, IEEE Standard on Piezoelectricity (IEEE, New York, 1987)

  29. M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Appl. Phys. Lett. 88, 042907 (2006)

    Article  Google Scholar 

  30. M.K. Singh, S. Ryu, H.M. Jang, Phys. Rev. B 72, 132101 (2005)

    Article  Google Scholar 

  31. H. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)

    Article  Google Scholar 

  32. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, H. Wang, W. Li, Mater. Res. Bull. 47, 4233 (2012)

    Article  Google Scholar 

  33. S.J. Zhang, C.A. Randall, T.R. Shrout, Appl. Phys. Lett. 83, 3150 (2003)

    Article  Google Scholar 

  34. R.E. Eitel, C.A. Randall, T.R. Shrout, S.E. Park, Jpn. J. Appl. Phys. 41, 2099 (2002)

    Article  Google Scholar 

  35. I. Sterianou, I.M. Reaney, D.C. Sinclair, D.I. Woodward, D.A. Hall, A.J. Bell, T.P. Comyn, Appl. Phys. Lett. 87, 242901 (2005)

    Article  Google Scholar 

  36. J.R. Cheng, L.E. Cross, J. Appl. Phys. 94, 5188 (2003)

    Article  Google Scholar 

  37. T. Goto, Y. Noguchi, M. Soga, M. Miyayama, Mater. Res. Bull. 40, 1044 (2005)

    Article  Google Scholar 

  38. A.T. Kozakov, A.G. Kochur, K.A. Googlev, A.V. Nikolsky, I.P. Raevski, V.G. Smotrakov, V.V. Yeremkin, J. Electron Spectrosc. 184, 16 (2011)

    Article  Google Scholar 

  39. H.M. Li, Y.Y. Zhou, Y.F. Tian, X.D. Li, H.L. Guo, D.Q. Xiao, J.G. Zhu, Appl. Surf. Sci. 257, 1407 (2010)

    Article  Google Scholar 

  40. X. Xue, G.Q. Tan, W.L. Liu, H.J. Ren, Ceram. Int. 40, 6247 (2014)

    Article  Google Scholar 

  41. F. Gao, C. Cai, Y. Wang, S. Dong, X.Y. Qiu, G.L. Yuan, Z.G. Liu, J.M. Liu, J. Appl. Phys. 99, 094105 (2006)

    Article  Google Scholar 

  42. D. Kothari, V.R. Reddy, A. Gupta, D.M. Phase, N. Lakshmi, S.K. Deshpande, A.M. Awasthi, J. Phys.: Condens. Matter 19, 136202 (2007)

    Google Scholar 

  43. Z. Wen, L. You, X. Shen, X.F. Li, D. Wu, J.L. Wang, A.D. Li, Mater. Sci. Eng., B 176, 990 (2011)

    Article  Google Scholar 

  44. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  Google Scholar 

  45. K.Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, K. Saito, J. Appl. Phys. 96, 3399 (2004)

    Article  Google Scholar 

  46. S.Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D.G. Schlom, Y.J. Lee, Y.H. Chu, M.P. Cruz, Q. Zhan, T. Zhao, R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005)

    Article  Google Scholar 

  47. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71, 014113 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support of the International Technology Cooperation Project from the Ministry of Science and Technology of China (2011DFA52680), Natural Science Foundation of China (No. 51372191 and No. 51102189), the Fundamental Research Funds for the Central Universities (No. 2012-IV-006), and State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (KF201314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Xu, C., Liu, H. et al. Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3–BaTiO3 high temperature piezoceramics. J Mater Sci: Mater Electron 25, 4975–4982 (2014). https://doi.org/10.1007/s10854-014-2260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2260-0

Keywords

Navigation