Skip to main content
Log in

Size effect on magnetic and dielectric properties in nanocrystalline LaFeO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocystalline LaFeO3 powders with different grain sizes (30–150 nm) have been synthesized by a polymerized complex method to investigate their magnetic and dielectric properties. Thermogravimetric–differential thermal analysis curves of the precursory powders reveal the thermal decomposition and crystallization temperature should be at above 650 °C. The precursory powders were sintered at temperatures of 650, 700, 800, and 900 °C for 2 h. X-ray diffraction identify that all the samples are phase-pure. Weak ferromagnetic behaviors and finite exchange bias (EB) effects were observed for all the samples at room temperature, and both Mr and HEB decreases monotonically with the increase of grain size. For 30 nm sample, the remnant magnetization and the EB field are 0.086 emu/g and 310 Oe, respectively. On the other hand, the dielectric constants decrease with the decreasing of grain size. Among all the samples, 150 nm samples show the largest dielectric constant about 6 × 103.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Nolting, A. Scholl, J. Stoöhr, J.W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. Lüning, E.E. Fullerton, M.F. Toney, M.R. Scheinfeink, H.A. Padmore, Nature 405, 767 (2000)

    Article  Google Scholar 

  2. J. Yoo, S. Kim, H. Choi, Y. Rhim, J. Lim, S. Lee, A.J. Jacobson, J. Electroceram. 26, 56 (2011)

    Article  Google Scholar 

  3. M.A. Gabal, S.S. Ata-Allah, A.O. Al-Youbi, S.N. Basahel, S.A. Al-Thabaiti, J. Mater. Sci. 41, 7597 (2006)

    Article  Google Scholar 

  4. J. Li, X. Cai, T.M. Wang, Appl. Phys. A 55, 158 (1992)

    Article  Google Scholar 

  5. M.L. Grilli, E.D. Bartolomeo, E. Traversa, J. Electrochem. Soc. 148, H98 (2001)

    Article  Google Scholar 

  6. A.H. Wu, H. Shen, J. Xu, L.W. Jiang, L.Q. Luo, S.J. Yuan, S.X. Cao, H.J. Zhang, J. Solgel Sci. Technol. 59, 158 (2011)

    Article  Google Scholar 

  7. A. Scholl, J. Stöhr, J. Lüning, J.W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, F. Nolting, S. Anders, E.E. Fullerton, M.R. Scheinfein, H.A. Padmore, Science 287, 1014 (2000)

    Article  Google Scholar 

  8. A.A. Cristóbal, P.M. Botta, E.F. Aglietti, M.S. Conconi, P.G. Bercoff, J.M. Porto, López. Mater. Chem. Phys. 130, 1275 (2011)

    Article  Google Scholar 

  9. S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Mater. Lett. 64, 415 (2010)

    Article  Google Scholar 

  10. H. Ahmadvand, H. Salamati, P. Kameli, A. Poddar, M. Acet, K. Zakeri, J. Phys. D Appl. Phys. 43, 245002 (2010)

    Article  Google Scholar 

  11. K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, J. Magn. Magn. Mater. 329, 133 (2013)

    Article  Google Scholar 

  12. M. Popa, J. Frantti, M. Manakin, Solid State Ion. 154–155, 437 (2002)

    Article  Google Scholar 

  13. M. Popa, J.M.C. Moreno, J. Alloys Compd. 509, 4108 (2011)

    Article  Google Scholar 

  14. S.G. Wang, A.M. Chang, H.M. Zhang, Q. Zhao, Mater. Chem. Phys. 110, 83 (2008)

    Article  Google Scholar 

  15. X.L. Wang, D. Li, T.Y. Cui, P. Kharel, W. Liu, Z.D. Zhang, J. Appl. Phys. 107, 09B510 (2010)

    Google Scholar 

  16. Z.M. Tian, S.L. Yuan, X.L. Wang, X.F. Zheng, S.Y. Yin, C.H. Wang, L. Liu, J. Appl. Phys. 106, 103912 (2009)

    Article  Google Scholar 

  17. K. De, M. Thakur, A. Manna, S. Giri, J. Appl. Phys. 99, 013908 (2006)

    Article  Google Scholar 

  18. Y. Du, Z.X. Cheng, X.L. Wang, S.X. Dou, J. Appl. Phys. 107, 09D908 (2010)

    Google Scholar 

  19. R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007)

    Article  Google Scholar 

  20. S. Vijayanand, H.S. Potdar, P.A. Joy, Appl. Phys. Lett. 94, 182507 (2009)

    Article  Google Scholar 

  21. F. Gao, P.L. Li, Y. Weng, S. Dong, L.F. Wang, L.Y. Lv, K.F. Wang, J.M. Liu, Z.F. Ren, Appl. Phys. Lett. 91, 072504 (2007)

    Article  Google Scholar 

  22. R.S. Bhalerao-Panajkar, M.M. Shirolkar, R. Dasd, T. Maityd, P. Poddard, S.K. Kulkarni, Solid State Commun. 151, 55 (2001)

    Article  Google Scholar 

  23. S.J. Lee, K.Y. Kang, S.K. Han, Appl. Phys. Lett. 75, 1784 (1999)

    Article  Google Scholar 

  24. C.H. Wang, Z.F. Liu, L. Yu, Z.M. Tian, S.L. Yuan, Mater. Sci. Eng. B 176, 1243 (2011)

    Article  Google Scholar 

  25. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    Article  Google Scholar 

  26. J. Wu, C.W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

Helpful discussions with Dr. L.H. Qian are appreciated. This work was supported by the National Science Foundation of China (Grant No. 11174092). We would like to thank the staffs of Analysis Center of HUST for their assistance in various measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Y., Luo, Y.S., Zou, Z.J. et al. Size effect on magnetic and dielectric properties in nanocrystalline LaFeO3 . J Mater Sci: Mater Electron 25, 760–764 (2014). https://doi.org/10.1007/s10854-013-1642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1642-z

Keywords

Navigation