Skip to main content
Log in

Formation of LaFeO3 and thermal decomposition reactions in lanthanum(III) oxalate–iron(II) oxalate crystalline mixture

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal processes involved during the decomposition course of La2(C2O4)3·10H2O–FeC2O4·2H2O (1:2 mole ratio) mixture up to 750 °C, in an atmosphere of air, were monitored by thermogravimetry and differential thermal analysis. X-ray diffraction and Mössbauer spectroscopy were used to characterize the intermediates and the final product. The results showed that a microcrystalline or possibly amorphous iron(III) oxide with a paramagnetic nature was appeared in the early stages of decomposition at 250 °C. By increasing the temperature, a well crystalline hematite with ferromagnetic properties was obtained. XRD pattern of the mixture calcined at 1100 °C shows the formation of LaFeO3 single phase in consistent with the hyperfine magnetic splitting (one sextet of lines) characteristic of LaFeO3 obtained in the Mössbauer spectra of the mixture calcined at the same temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldman A (1993) Modern ferrite technology. Marcel Dekker, NY

    Google Scholar 

  2. Treves D (1965) Phys Rev 36:1033

    CAS  Google Scholar 

  3. Eibshutz M, Shtrikman S, Treves D (1967) Phys Rev 156:562

    Article  Google Scholar 

  4. Coey JMD, Sawatzky GA, Morrish AH (1969) Phys Rev 184:334

    Article  CAS  Google Scholar 

  5. Lukaszewicz JP (1991) Sens Actuators (B) 4:227

    Article  Google Scholar 

  6. Obayashi H, Kudo T (1980) Nippon Kagaku Kaishi 1568

  7. Aakawa T, Kurachi H, Shiokawa J (1985) J Mater Sci 4:1207

    Article  Google Scholar 

  8. Li WB, Yoneyama H, Tamura H (1982) Nippon Kagaku Kaishi 761

  9. Matsiwra Y, Matsushima S, Sakamato M, Sadaoka Y (1993) J Mater Chem 3:767

    Article  Google Scholar 

  10. Kakihana M (1996) J Sol–Gel Sci Technol 6:7

    Article  CAS  Google Scholar 

  11. Tascon J, Tejuca LG (1982) Z Phys Chem Neue Folge (Wiesbaden) 130:219

    CAS  Google Scholar 

  12. Falcon H, Goeta AE, Punte G, Carbonio RE (1997) J Sol State Chem 133:379

    Article  CAS  Google Scholar 

  13. Popa M, Frantti J, Kakihana M (2002) Sol State Ionics 154–155:437

    Article  Google Scholar 

  14. Suresh K, Panchapagesan TS, Patil KC (1999) Sol State Ionics 126:299

    Article  CAS  Google Scholar 

  15. Zhang Q, Saito F (2001) J Mater Sci 36:2287

    Article  CAS  Google Scholar 

  16. Sangaletti L, Depero LE, Allieri B, Nunziante P, Traversa E (2001) J Eur Ceram Soc 21:719

    Article  CAS  Google Scholar 

  17. Vazquez C, Kagerler P, Lopez-Quintela MA, Sanches M, Rivas J (1998) J Mater Res 13:451

    Google Scholar 

  18. Balboul BAA, El-Roudi AM, Samir E-, Othman AG (2002) Thermochim Acta 387:109

    Article  CAS  Google Scholar 

  19. Boyanov B, Khadzhiev D, Vasilev-Plavdiv V (1985) Thermochim Acta 93:89

    Article  CAS  Google Scholar 

  20. Dollimore D (1987) Thermochim Acta 117:331

    Article  CAS  Google Scholar 

  21. Diefallah EL-HM, Gabal MA, El-Bellihi AA, Eissa NA (2001) Thermochim Acta 376:43

    Article  CAS  Google Scholar 

  22. Grosse G (1992) Mos-90, version 2.2. 2nd edn. Oskar-Maria-Graf-Ring, Munchen

    Google Scholar 

  23. Brady PR, Duncan JF (1964) J Chem Soc 653

  24. Fluck E, Keler W, Nettwirth W (1963) Angew Chem 2:277

    Article  Google Scholar 

  25. Diefallah EL-HM (1992) Thermochim Acta 202:1

    Article  CAS  Google Scholar 

  26. Macklen ED (1968) J Inorg Nucl Chem 30:2689

    Article  CAS  Google Scholar 

  27. Nakamura T, Shinjo T, Endoh Y, Yamamato N, Shiga M, Nakamura Y (1964) Phys Lett 12:178

    Article  CAS  Google Scholar 

  28. Gabal MA, El-Bellihi AA, Ata-Allah SS (2003) J Mater Chem Phys 81:84

    Article  CAS  Google Scholar 

  29. Kisner OC, Sunvar AW (1960) Phys Rev Lett 4:412

    Article  Google Scholar 

  30. Music S, Ilkovac V, Ristic M (1992) J Mater Sci 27:1011

    Article  CAS  Google Scholar 

  31. Jiangong L, Xiao Hong C, Anmin WT (1993) Phys Stat Sol (b) 176:177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gabal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabal, M.A., Ata-Allah, S.S., Al-Youbi, A.O. et al. Formation of LaFeO3 and thermal decomposition reactions in lanthanum(III) oxalate–iron(II) oxalate crystalline mixture. J Mater Sci 41, 7597–7603 (2006). https://doi.org/10.1007/s10853-006-0848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0848-3

Keywords

Navigation