Skip to main content
Log in

Thermal behavior of copper powder prepared by hydrothermal treatment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper powder is synthesized by hydrothermal treatment using the copper powder obtained from the chemical reduction method as a precursor. The copper powder is also treated in benzotriazole solution. The powder X-ray diffraction patterns and SEM photomicrographs exhibit that the copper powder possesses perfect crystallinity and narrow size distribution. The thermal behavior of the three kinds of copper powder is evaluated by thermogravimetry and derivative thermogravimetry. Comparing with the sample prepared by means of the chemical reduction method, the copper powder treated under hydrothermal condition displays a peak temperature of the formation of Cu2O shifting from 60.49 °C to higher temperatures, which indicates that it has strong antioxidation performance. However, the antioxidation effect of copper powder treated in benzotriazole solution shows only a little improvement at high temperature

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, T. Nomura, J. Power Sources 60, 199 (1996)

    Article  CAS  Google Scholar 

  2. H. Shin, J.-S. Park, S. Kim, H.S. Jung, K.S. Hong, Microelectron. Eng. 77, 270 (2005)

    Google Scholar 

  3. B.-H. Kim, G.-Y. Lee, W.-J. Lee, J.-H. Kim, Mater. Sci. Eng. B 113, 198 (2004)

    Article  Google Scholar 

  4. H. Kishi, Y. Mizuno, H. Chanzono, Jpn. J. Appl. Phy. 42, 1 (2003)

    Article  CAS  Google Scholar 

  5. M. Pollet, S. Marinel, J. Mater. Sci. 39, 1943 (2004)

    Article  CAS  Google Scholar 

  6. J..L. Paulsen, E.K. Reed, Microelectron. Reliability 42, 815 (2002)

    Article  Google Scholar 

  7. Y. Wang, L. Li, J. Qi, Z. Ma, J. Cao, Z. Gui, Mater. Sci. Eng. B 99, 378 (2003)

    Article  Google Scholar 

  8. D.F.K. Hennings, J. Eur. Ceram. Soc. 21, 1637 (2001)

    Article  CAS  Google Scholar 

  9. V. Rosenband, A. Gany, J. Mater. Process. Technol. 153–154, 1058 (2004)

    Article  Google Scholar 

  10. A. Agrawal, V. Kumar, B.D. Pandey, K.K. Sahu, Mater. Res. Bull. 41, 879 (2006)

    Article  CAS  Google Scholar 

  11. H. Zhu, C. Zhang, Y. Yin, Nanotechnology 16, 3079 (2005)

    Article  CAS  Google Scholar 

  12. A. Sinha, S. Kumar Das, T.V. Vijaya Kumar, V. Rao, P. Ramachandrarao, J. Mater. Synth. Process. 7, 373 (1999)

    Article  CAS  Google Scholar 

  13. J. Guilherme, R. Poco, R. Guardani, C. Shimmi, M. Giulietti, Mater. Res. 9, 131 (2006)

    Google Scholar 

  14. H.-T. Zhu, C.-Y. Zhang, Y.-S. Yin, J. Cryst. Growth 270, 722 (2004)

    Article  CAS  Google Scholar 

  15. R.D. Van der Weijden, J. Mahabir, A. Abbadi, M.A. Reuter, Hydrometallurg 64, 131 (2002)

    Article  Google Scholar 

  16. E. Cifti, M.N. Rahaman, J. Mater. Sci. 36, 4875 (2001)

    Article  Google Scholar 

  17. O.O. Vasylkiv, Y. Sakka, V.V. Skorokhod, Powder Metall. Met. Ceram. 44, 228 (2005)

    Article  CAS  Google Scholar 

  18. S.-F. Liu, I. R. Abothu, S. Komarneni, Mater. Lett. 38, 344 (1999)

    Article  CAS  Google Scholar 

  19. Y.J. Ma, J.H. Cho, Y.H. Lee, B.I. Kim, Mater. Chem. Phy. 98, 5 (2006)

    Article  CAS  Google Scholar 

  20. H. Wang, Journal of Mater. Sci. Lett. 22, 471 (2003)

    Google Scholar 

  21. Yu V. Kolen’ko, V.D. Maximov, V.A. Muhanov, B.R. Churagulov, Mater. Sci. Eng. C 23, 1033 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencheng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Zhu, L., Dong, D. et al. Thermal behavior of copper powder prepared by hydrothermal treatment. J Mater Sci: Mater Electron 18, 817–821 (2007). https://doi.org/10.1007/s10854-007-9257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9257-x

Keywords

Navigation