Skip to main content
Log in

Effect of drying methods on catalytic performance of nano-sized copper β-resorcylate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Copper β-resorcylate (cupric 2,4-dihydroxy-benzoate, β-Cu) nanoparticles have been successfully synthesized via a facile wet mechanical grinding and dried by vacuum drying and vacuum freeze-drying techniques. The crystal forms were characterized by X-ray diffraction, and the particle sizes were analyzed using scanning electron microscopy and transmission electron microscopy. At the same time, the catalytic performances of the as-prepared β-Cu nanoparticles on the thermal decomposition of ammonium perchlorate (AP) were studied through thermogravimetric analysis/differential scanning calorimetric techniques. The results revealed that nano-sized β-Cu obtained by vacuum drying displays a strong tendency to agglomeration, and conversely nano-sized β-Cu obtained by vacuum freeze-drying shows a semi-spherical morphology and good dispersion with a fairly uniform size of 100 nm. The formation mechanism of drying process of β-Cu nanoparticles was discussed in detail. In addition, the TG/DSC study showed that the nano-sized β-Cu prepared by vacuum freeze-drying could be explored to be a promising additive for accelerating the thermal decomposition of AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Menke K, Eisele S. Rocket propellants with reduced smoke and high burning rates. Propellants Explos Pyrotech. 1997;22:112–9.

    Article  CAS  Google Scholar 

  2. Al-Harthi A, Willimas A. Effect of fuel binder and oxidizer particle diameter on the combustion of ammonium perchlorate based propellants. Fuel. 1998;77:1451–68.

    Article  CAS  Google Scholar 

  3. Brill TB, Budenz BT. Flash pyrolysis of ammonium perchlorate-hydroxyl-terminated-polybutadiene mixtures including selected additives. Prog Astronaut Aeronaut. 2000;185:3–32.

    CAS  Google Scholar 

  4. Iqbal MM, Wang L. Burning–rate calculations of wide-distribution ammonium perchlorate composite propellants. J Propuls Power. 2007;23:1136–40.

    Article  CAS  Google Scholar 

  5. Hedman TD, Reese DA, Cho KY, Groven LJ, Lucht RP, Son SF. An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF. Combust Flame. 2012;159:1748–58.

    Article  CAS  Google Scholar 

  6. Liu JX, Li FS, Chen AS, Yang YL, Ma ZY. Preparation of Fe2O3 nanoparticles and its catalytic effect on thermal decomposition of ammonium perchlorate (AP). J Propuls Technol. 2006;27:381–4.

    CAS  Google Scholar 

  7. Xu Y, Chen D, Jiao M, Xue K. CuO microflowers composed of nanosheets: synthesis, characterization, and formation mechanism. Mater Res Bull. 2007;42:1723–31.

    Article  CAS  Google Scholar 

  8. Heng QL, Xiao F, Luo JM, Sun QJ, Wang JD, Su XT. Nano-CuO: preparation with different morphologies and catalytic performance for thermal decomposition of ammonium perchlorate. Chin J Inorg Chem. 2009;25:359–63.

    CAS  Google Scholar 

  9. Boumaza S, Bouarab R, Trari M, Bouguelia A. Hydrogen photo–evolution over the spinel CuCr2O4. Energy Convers Manag. 2009;50:62–8.

    Article  CAS  Google Scholar 

  10. Yin P, Jiang XH, Zou M, Lu LD, Wang X. Catalytic effect of SiO2/Co3O4 core-shell catalyst on thermal decomposition of AP. Chin J Inorg Chem. 2014;30:185–91.

    CAS  Google Scholar 

  11. Yu ZX, Lu LD, Yang XJ, Wang X. Study on in situ catalytic thermal decomposition of ammonium perchlorate over CuC2O4. Chin J Inorg Chem. 2010;26:2155–9.

    CAS  Google Scholar 

  12. Zheng XD, Li P, Zheng SL, Zhang Y. Thermal decomposition of ammonium perchlorate in the presence of Cu(OH)2∙2Cr(OH)3 nanoparticles. Powder Technol. 2014;268:446–51.

    Article  CAS  Google Scholar 

  13. Jing XY, Song SS, Wang J, Ge L, Jamil SB, Liu Q, Mann T, He Y, Zhang ML, Wei H, Liu LH. Solvothermal synthesis of morphology controllable CoCO3 and their conversion to Co3O4 for catalytic application. Powder Technol. 2012;217:624–8.

    Article  CAS  Google Scholar 

  14. Habibi MH, Fakhri F. Sol–gel combustion synthesis and characterization of nanostructure copper chromite spinel. J Therm Anal Calorim. 2014;115:1329–33.

    Article  CAS  Google Scholar 

  15. Hosseini SG, Abazari R, Gavi A. Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;37:72–9.

    Article  CAS  Google Scholar 

  16. Camp AT, Mueller KF, Nauflett GW. Liquid monopropellants containing dissolved combustion modifiers: United States. 1975.

  17. Fu XL, Li JZ, Zhong FX, Wang Q, Wei HJ, Zhang NY. Effects of organic copper salts on combustion characteristics and thermal decomposition at high pressure of RDX–CMDB propellants. Chin J Energy Mater. 2010;18:364–7.

    CAS  Google Scholar 

  18. Yang Y, Cao XF, Liu LL, Liu HY, Li FS. Catalysis of nanometer transition metals on the thermal decomposition of ammonium perchlorate. Chin J Energy Mater. 2005;13:273–7.

    CAS  Google Scholar 

  19. Liu YZ, Guo Y, Li Y, Shi GL. Synthesis of 2,4–Dihyoxybenzoic acid-Cu(II). Chin J Syn Chem. 2006;14:269–71.

    Article  Google Scholar 

  20. Li Y, Guo Y, Liu YZ, Shi GL, Xie WX. Synthesis and characterization of ultrafine cupric 2,4–Dihydroxy-benzoate(β-Cu). Chin J Explos Propell. 2006;29:32–5.

    Google Scholar 

  21. Guo Y. Preparation of combustion catalyst β-Cu ultrafine powders in impinging steam–rotating packed bed [D]. Tai Yuan: North University of China; 2006.

    Google Scholar 

  22. Van’T Land CM. Drying in the process industry [M]. New York: Wiley; 2011.

    Book  Google Scholar 

  23. Ma ZY, Li FS, Bai HP. Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant. Propellants Explos Pyrotech. 2006;31:447–51.

    Article  CAS  Google Scholar 

  24. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    Article  CAS  Google Scholar 

  25. Jia ZG, Ren DP, Wang QZ, Zhu RS. A new precursor strategy to prepare ZnCo2O4 nanorods and their excellent catalytic activity for thermal decomposition of ammonium perchlorate. Appl Surf Sci. 2013;270:312–8.

    Article  CAS  Google Scholar 

  26. Hao GZ, Liu J, Liu HH, Xiao L, Qiao Y, Gao H, Jiang W, Zhao FQ. Cu–Cr–Pb nanocomposites. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4924-2.

    Google Scholar 

  27. Liu ZR, Kong YH, Yin CM, Wu CY. Thermal decomposition of cupric benzoate and its derivatives. I. Mechanism of thermal decomposition of cupric benzoate and its amino derivatives. J Solid Rocket Technol. 1997;20:41–4.

    Google Scholar 

  28. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2012;217:330–9.

    Article  CAS  Google Scholar 

  29. Li N, Geng ZF, Cao MH, Ren L, Zhao XY, Liu B, Tian Y, Hu CW. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon. 2013;54:124–32.

    Article  CAS  Google Scholar 

  30. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  31. Dhupe AP, Gokarn AN, Doraiswamy LK. Investigations into the compensation effect in catalytic gasification of active charcoal by carbon dioxide. Fuel. 1991;70:839–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Project No. 51206081) and Basic Product Innovation Technology Research Project of Explosives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, G., Liu, J., Xiao, L. et al. Effect of drying methods on catalytic performance of nano-sized copper β-resorcylate. J Therm Anal Calorim 124, 1367–1374 (2016). https://doi.org/10.1007/s10973-015-5204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5204-x

Keywords

Navigation