Skip to main content
Log in

Features of Preparing Nano-Size Powders of Tetragonal Zirconium Dioxide Stabilized with Yttrium

  • Nanostructured Materials
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The effect of wet chemical synthesis parameters on the properties of nano-powders of zirconium dioxide stabilized with yttrium is studied. Features of nano-powder synthesis by the oxalate, hydroxide and thermal hydrolysis of a sol methods are determined. Nano-size zirconium dioxide powder stabilized with 3 mole% yttrium is prepared by hydrothermal coprecipitation from a sol of metal chlorides and urea followed by dispersion and calcination. The possibility of controlling particle morphology by changing synthesis conditions, subsequent treatment and ultrasonic dispersion of the powder, and the calcination temperature-time schedule are studied by experiment. A method is developed for optimizing particle morphology (level of aggregation (agglomeration capacity)) and size. Non-agglomerated zirconium dioxide powder consisting of uniform nanosized (about 45 nm) aggregates of primary crystals is synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. F. Lange, “Powder processing science and technology for increased reliability,” J. Amer. Ceram. Soc., 72, No.1, 3–15 (1989).

    Article  Google Scholar 

  2. W. H. Rhodes, “Agglomerate and particle size effect on sintering yttrium-stabilized zirconia,” J. Amer. Ceram. Soc., 64, No.1, 19–22 (1981).

    Google Scholar 

  3. M. Van de Graaf, J. Ter Maat, and A. Burggraaf, “Microstructure and sintering kinetics of highly reactive ZrO2-Y2O3 ceramics,” J. Mater. Sci., 20, 1407–1418 (1985).

    Article  Google Scholar 

  4. S. Theunissen, A. Winnubst, and A. Burggraaf, “Sintering kinetics and microstructure development of nano-scale Y-TZP ceramics,” J. Eur. Ceram. Soc. 11, 315–324 (1993).

    Article  Google Scholar 

  5. P. Duran, M. Villegas, F. Capel, and C. Mure, “Low temperature fully densified nanostructured Y-TZP ceramic,” J. Mater. Sci, 15, 741–744 (1996).

    Google Scholar 

  6. S. Lawsen, “Environment degradation of zirconia ceramics,” J. Eur. Ceram. Soc. 15, 485–502 (1995).

    Article  Google Scholar 

  7. J. Lin and J. Duh, “Coprecipitation and hydrothermal synthesis of ultrafine 5.5 mole% CeO2-2 mole% YO1.5-ZrO2 powders,” J. Amer. Ceram. Soc., 80, No.1, 92–98 (1997).

    Google Scholar 

  8. H. Nishizawa, Y. Yamasaki, and K. Matsuoka, “Crystallization and transformation of zirconia under hydrothermal conditions,” J. Amer. Ceram. Soc., 65, No.7, 343–346 (1982).

    Google Scholar 

  9. E. Tani, M. Yoshimura, and S. Somiya, “Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions,” J. Amer. Ceram. Soc., 66, No.1, 11–14 (1983).

    Google Scholar 

  10. J. Lin and J. Duh, “Crystallite size and microstrain of thermally aged low-ceria and low-yttrium-doped zirconia,” J. Amer. Ceram. Soc., 81, No.4, 853–860 (1998).

    Google Scholar 

  11. W. Luan, L. Gao, and J. Guo, “Study of drying stage of nano-scale powder preparation,” Nanostructured Mat., 10, No.7, 1119–1125 (1998).

    Article  Google Scholar 

  12. N. Enomoto, S. Muruyama, and Z. Nakagawa, “Agglomeration of silicon spheres under ultrasonication,” J. Mater. Sci., 12, No.5, 1410–1415 (1997).

    Google Scholar 

  13. S. Kwon and G. L. Messing, “The effect of particle solubility on the strength of nanocrystalline agglomerates: boehmite,” Nanostructured Mat., 8, No.4, 399–418 (1997).

    Article  Google Scholar 

  14. M. Kitayama and J. A. Pak, “Formation and control of agglomerates in alumina powder,” J. Amer. Ceram. Soc., 79, No.8, 2003–2011 (1996).

    Article  Google Scholar 

  15. A. Maskara and D. M. Smith, “Agglomeration during of fine silica powders. Part. 2. The role of particle solubility,” J. Amer. Ceram. Soc., 80, No.7, 1715–1722 (1997).

    Google Scholar 

  16. A. Singhal, G. Skandan, A. Wang, et al., “Nanoparticle aggregation during vapor phase synthesis,” Nanostructured Mat., 11, No.4, 545–552 (1999).

    Article  Google Scholar 

  17. M. Readey and D. Readey, “Sintering of ZrO2 in HCl atmospheres,” J. Amer. Ceram. Soc., 69, No.7, 580–582 (1986).

    Article  Google Scholar 

  18. M. S. Kalishewski and A. H Heuer, “Alcohol interaction with zirconia powders,” J. Amer. Ceram. Soc., 73, No.6, 1504–1509 (1990).

    Article  Google Scholar 

  19. R. Peterson and E. B. Slamovich, “Effect of processing parameters on the morphology of hydrothermally derived PbTiO3 powders,” J. Amer. Ceram. Soc., 82, No.7, 1702–1710 (1999).

    Google Scholar 

  20. E. Jorge, T. Chartier, and P. Boch, “Ultrasonic dispersion of ceramic powder,” J. Amer. Ceram. Soc., 73, No.8, 2552–2554 (1990).

    Article  Google Scholar 

  21. T. Suzuki, Y. Sakka, K. Nakano, and K. Hiraga, “Effect of ultrasonication on colloidal dispersion of Al2O3 and ZrO2 powders in pH controlled suspension,” Mat. Trans., 39, No.6, 689–692 (1998).

    Google Scholar 

  22. D. Schmid and L. Sbaizero, “Ultrasonic homogenization of equivolumetric Al2O3/ZrO2 suspensions,” J. Mater. Sci., 35, 1213–1217 (2000).

    Article  Google Scholar 

  23. O. Vasylkiv and Y. Sakka, “Nonisothermal synthesis of yttria stabilized zirconia nano-powder through oxalate processing. I. Peculiarities of (Y — Zr) oxalate synthesis and its decomposition,” J. Amer. Ceram. Soc., 83, No.9, 2196–2202 (2000).

    Google Scholar 

  24. O. Vasylkiv, Y. Sakka, and H. Borodianska “Nonisothermal synthesis of yttria stabilized zirconia nano-powder through oxalate processing. II. Morphology manipulation,” J. Amer. Ceram. Soc., 84, No.11, 2484–2488 (2001).

    Google Scholar 

  25. O. Vasylkiv and Y. Sakka, “Synthesis and sintering of zirconia nano-powder by non-isothermal decomposition from hydroxide,” J. Ceram. Soc. Jap., 189, 500–50 (2001).

    Google Scholar 

  26. O. Vasylkiv and Y. Sakka, “Hydroxide synthesis, colloidal processing and sintering of nano-size 3Y-TZP powder,” Scr. Mater., 44, 2219–2223 (2001).

    Article  Google Scholar 

  27. O. Vasylkiv, Y. Sakka, and K. Hiraga, “Chemical synthesis and sintering of zirconia-based nano-powders,” Ceram. Trans. Amer. Ceram. Soc., 112, 11–16 (2001).

    Google Scholar 

  28. O. Vasylkiv and Y. Sakka, “Hydrothermal synthesis of nano-size ZrO2 powder, its characterization and colloidal processing,” Stud. Surf. Sci. Catal., 32, 233–236 (2001).

    Google Scholar 

  29. O. Vasylkiv and Y. Sakka, “Synthesis and colloidal processing of zirconia, nano-powder,” J. Amer. Ceram. Soc., 84, No.11, 2489–2494 (2000).

    Google Scholar 

  30. O. Vasylkiv, Y. Sakka, and V. V. Skorokhod, “Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nano-ceramics,” J. Amer. Ceram. Soc., 86, No.2, 299–304 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Nos. 5–6(443), pp. 28–42, May–June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasylkiv, O.O., Sakka, Y. & Skorokhod, V.V. Features of Preparing Nano-Size Powders of Tetragonal Zirconium Dioxide Stabilized with Yttrium. Powder Metall Met Ceram 44, 228–239 (2005). https://doi.org/10.1007/s11106-005-0086-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-005-0086-2

Keywords

Navigation