Skip to main content
Log in

Advances in materials informatics: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Materials informatics (MI) is aimed to accelerate the materials discovery using computational intelligence and data science. Progress of MI depends on the strength of database and artificial intelligence protocols comprising machine learning (ML) and deep learning (DL) frameworks. Conventional ML models are simple and interpretable, relying on statistical techniques and algorithms to learn patterns and make predictions with limited data. Conversely, DL, an advancement of ML, employs mathematical neural networks to automatically extract features and handle intricate data at the cost of data size and computational complexity. This work aims to provide a state-of-the-art understanding of the tools, data sources and techniques used in MI and their benefits and challenges. We evaluate the growth of MI through its subfields and track the main path of its advancement for artificial intelligence-driven materials discovery. The advancements in computational intelligence via machine learning and deep learning algorithms in different fields of materials science are discussed. As a specific example, understanding of materials properties using microstructural images is reviewed. Future demands and research prospects in materials science utilizing materials informatics have also been comprehensively analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability

All data used for this work are disclosed in the paper.

References

  1. Rajan K (2005) Materials informatics. Mater Today 8(10):38–45. https://doi.org/10.1016/S1369-7021(05)71123-8

    Article  CAS  Google Scholar 

  2. Jose R, Ramakrishna S (2018) Materials 4.0: materials big data enabled materials discovery. In: Applied Materials Today vol. 10, ed

  3. Ramakrishna S et al (2019) Materials informatics. J Intell Manuf 30(6):2307–2326. https://doi.org/10.1007/s10845-018-1392-0

    Article  Google Scholar 

  4. Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning in materials informatics: recent applications and prospects. npj Comput Mater 3(1):54–54. https://doi.org/10.1038/s41524-017-0056-5

    Article  ADS  Google Scholar 

  5. Rickman JM, Lookman T, Kalinin SV (2019) Materials informatics: from the atomic-level to the continuum. Acta Materialia vol. 168

  6. Materials Genome Initiative for Global Competitiveness (2011) [Online]. Available: www.ostp.gov/nstc

  7. Sukumar N, Krein M, Luo Q, Breneman C (2012) MQSPR modeling in materials informatics: a way to shorten design cycles? J Mater Sci 47(21):7703–7715. https://doi.org/10.1007/s10853-012-6639-0

    Article  CAS  ADS  Google Scholar 

  8. Adedeji O, Wang Z (2019) Intelligent waste classification system using deep learning convolutional neural network. Procedia Manuf 35:607–612. https://doi.org/10.1016/j.promfg.2019.05.086

    Article  Google Scholar 

  9. Aggarwal V, Gupta V, Gupta S, Sharma N, Sharma K, Sharma N (2021) Using transfer learning and pattern recognition to implement a smart waste management system. In: 2021 Second international conference on electronics and sustainable communication systems (ICESC), IEEE, pp 1887–1891, https://doi.org/10.1109/ICESC51422.2021.9532732

  10. Ahmed S, Mubarak S, Du JT, Wibowo S (2022) Forecasting the status of municipal waste in smart bins using deep learning. Int J Environ Res Public Health 19(24):16798–16798. https://doi.org/10.3390/ijerph192416798

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alzubi Y, Alqawasmeh H, Al-Kharabsheh B, Abed D (2022) Applications of nearest neighbor search algorithm toward efficient rubber-based solid waste management in concrete. Civ Eng J 8(4):695–709. https://doi.org/10.28991/CEJ-2022-08-04-06

    Article  Google Scholar 

  12. Belsare KS, Singh M (2022) Varıous frameworks for IoT-enabled intelligent waste management system using ML for smart cities, pp 797–817

  13. Carrera B, Piñol VL, Mata JB, Kim K (2022) A machine learning based classification models for plastic recycling using different wavelength range spectrums. J Clean Prod 374:133883–133883. https://doi.org/10.1016/j.jclepro.2022.133883

    Article  Google Scholar 

  14. Ezzahra Yatim F, Boumanchar I, Srhir B, Chhiti Y, Jama C, Ezzahrae M’hamdi Alaoui F (2022) Waste-to-energy as a tool of circular economy: prediction of higher heating value of biomass by artificial neural network (ANN) and multivariate linear regression (MLR). Waste Manag 153:293–303. https://doi.org/10.1016/j.wasman.2022.09.013

    Article  PubMed  Google Scholar 

  15. Ihsanullah I, Alam G, Jamal A, Shaik F (2022) Recent advances in applications of artificial intelligence in solid waste management: a review. Chemosphere 309:136631–136631. https://doi.org/10.1016/j.chemosphere.2022.136631

    Article  CAS  PubMed  Google Scholar 

  16. Lahcen G, Mohamed E, Mohammed G, Hanaa H, Abdelmoula A (2022) Waste solid management using machine learning approach. In: 2022 8th International conference on optimization and applications (ICOA), IEEE, pp 1–5, https://doi.org/10.1109/ICOA55659.2022.9934356

  17. Li H, Jin Z, Krishnamoorthy S (2021) E-waste management using machine learning. In: 2021 6th International conference on big data and computing, New York, NY, USA. ACM, pp 30–35, https://doi.org/10.1145/3469968.3469973

  18. Lin K et al (2022) Applying a deep residual network coupling with transfer learning for recyclable waste sorting. Environ Sci Pollut Res 29(60):91081–91095. https://doi.org/10.1007/s11356-022-22167-w

    Article  Google Scholar 

  19. Arunkumar MS, Sathishkumar P, Suguna R, Deepa S (2022) An Internet of Things based waste management system using hybrid machine learning technique. In: 2022 6th International conference on electronics, communication and aerospace technology. IEEE, pp 438–443, https://doi.org/10.1109/ICECA55336.2022.10009242

  20. Namoun A, Hussein BR, Tufail A, Alrehaili A, Syed TA, BenRhouma O (2022) An ensemble learning based classification approach for the prediction of household solid waste generation. Sensors 22(9):3506–3506. https://doi.org/10.3390/s22093506

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  21. Neelakandan S et al (2022) Metaheuristics with deep transfer learning enabled detection and classification model for industrial waste management. Chemosphere 308:136046–136046. https://doi.org/10.1016/j.chemosphere.2022.136046

    Article  CAS  PubMed  Google Scholar 

  22. Sharma N, Litoriya R, Sharma A (2021) Application and analysis of K-means algorithms on a decision support framework for municipal solid waste management, pp 267–276

  23. Taki M, Rohani A (2022) Machine learning models for prediction the higher heating value (HHV) of municipal solid waste (MSW) for waste-to-energy evaluation. In: Case Studies in Thermal Engineering, vol. 31, pp. 101823–101823. https://doi.org/10.1016/j.csite.2022.101823

  24. Valencia Diaz MA, et al (2022) Machine learning techniques to the prediction of variables of the urban solid waste collection process. In: 2022 IEEE Colombian conference on applications of computational intelligence (ColCACI). IEEE, pp 1–6, https://doi.org/10.1109/ColCACI56938.2022.9905363

  25. Vu HL, Ng KTW, Richter A, Li J, Hosseinipooya SA (2022) Impacts of nested forward validation techniques on machine learning and regression waste disposal time series models. Ecol Inform 72:101897–101897. https://doi.org/10.1016/j.ecoinf.2022.101897

    Article  Google Scholar 

  26. Eleftheroglou N et al (2019) Intelligent data-driven prognostic methodologies for the real-time remaining useful life until the end-of-discharge estimation of the lithium-polymer batteries of unmanned aerial vehicles with uncertainty quantification. Appl Energy. https://doi.org/10.1016/j.apenergy.2019.113677

    Article  Google Scholar 

  27. Hou P, Jolliet O, Zhu J, Xu M (2020) Estimate ecotoxicity characterization factors for chemicals in life cycle assessment using machine learning models. Environ Int. https://doi.org/10.1016/j.envint.2019.105393

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mulholland GJ, Paradiso SP (2016) Perspective: materials informatics across the product lifecycle: selection, manufacturing, and certification. APL Mater. https://doi.org/10.1063/1.4945422

    Article  Google Scholar 

  29. Pregowska A, Osial M, Urbańska W (2022) The application of artificial intelligence in the effective battery life cycle in the closed circular economy model: a perspective. Recycling 7(6):81–81. https://doi.org/10.3390/recycling7060081

    Article  Google Scholar 

  30. Roman D, Saxena S, Bruns J, Valentin R, Pecht M, Flynn D (2021) A machine learning degradation model for electrochemical capacitors operated at high temperature. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3057959

    Article  Google Scholar 

  31. Anand DV, Xu Q, Wee J, Xia K, Sum TC (2022) Topological feature engineering for machine learning based halide perovskite materials design. npj Comput Mater 8(1):203–203. https://doi.org/10.1038/s41524-022-00883-8

    Article  ADS  Google Scholar 

  32. Fukada K, Seyama M (2022) Designing a multilayer film via machine learning of scientific literature. Sci Rep 12(1):930–930. https://doi.org/10.1038/s41598-022-05010-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Liu Z et al (2022) Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule 6(4):834–849. https://doi.org/10.1016/j.joule.2022.03.003

    Article  MathSciNet  CAS  Google Scholar 

  34. Nakayama M et al (2022) Na superionic conductor-type LiZr2 (PO4)3 as a promising solid electrolyte for use in all-solid-state Li metal batteries. Chem Commun 58(67):9328–9340. https://doi.org/10.1039/D2CC01526A

    Article  CAS  Google Scholar 

  35. Novikov I, Kovalyova O, Shapeev A, Hodapp M (2022) AI-accelerated materials informatics method for the discovery of ductile alloys. J Mater Res 37(21):3491–3504. https://doi.org/10.1557/s43578-022-00783-z

    Article  CAS  ADS  Google Scholar 

  36. Shi M, Feng C-P, Li J, Guo S-Y (2022) Machine learning to optimize nanocomposite materials for electromagnetic interference shielding. Compos Sci Technol 223:109414–109414. https://doi.org/10.1016/j.compscitech.2022.109414

    Article  CAS  Google Scholar 

  37. Al Duhayyim M et al (2022) Smart water quality prediction using atom search optimization with fuzzy deep convolutional network. Sustainability 14(24):16465–16465. https://doi.org/10.3390/su142416465

    Article  Google Scholar 

  38. Diwania S, Kumar M, Kumar R, Kumar A, Gupta V, Khetrapal P (2022) Machine learning-based thermo-electrical performance improvement of nanofluid-cooled photovoltaic–thermal system. Energy Environ, pp 0958305X2211469–0958305X2211469. https://doi.org/10.1177/0958305X221146947

  39. Doan TO et al (2022) Evaluation and machine learning-based prediction of Zn2+ treatment by the cyanobacterium biomaterial at packed columns. Environ Technol Innov 28:102948–102948. https://doi.org/10.1016/j.eti.2022.102948

    Article  CAS  Google Scholar 

  40. Dongale TD et al (2022) Machine learning-assisted design guidelines and performance prediction of CMOS-compatible metal oxide-based resistive switching memory devices. Appl Mater Today 29:101650–101650. https://doi.org/10.1016/j.apmt.2022.101650

    Article  Google Scholar 

  41. Iwama R, Kaneko H (2022) Integration of materials and process informatics: metal oxide and process design for CO2 reduction. ACS Omega 7(50):46922–46934. https://doi.org/10.1021/acsomega.2c06008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Janairo JIB (2021) Machine learning for the cleaner production of antioxidant peptides. Int J Peptide Res Therap 27(3):2051–2056. https://doi.org/10.1007/s10989-021-10232-w

    Article  CAS  Google Scholar 

  43. Jun H (2022) Cost-effective mechanism for environmental toxic reduction using deep learning. Sustain Energy Technol Assess 52:102206–102206. https://doi.org/10.1016/j.seta.2022.102206

    Article  Google Scholar 

  44. Kumar R et al (2021) A deep neural network-based approach for prediction of mutagenicity of compounds. Environ Sci Pollut Res 28(34):47641–47650. https://doi.org/10.1007/s11356-021-14028-9

    Article  CAS  Google Scholar 

  45. Liu G, Ayello F, Vera J, Eckert R, Bhat P (2021) An exploration on the machine learning approaches to determine the erosion rates for liquid hydrocarbon transmission pipelines towards safer and cleaner transportations. J Clean Prod 295:126478–126478. https://doi.org/10.1016/j.jclepro.2021.126478

    Article  Google Scholar 

  46. Qureshi KN, Alhudhaif A, Jeon G (2021) Electric-vehicle energy management and charging scheduling system in sustainable cities and society. Sustain Cities Soc 71:102990–102990. https://doi.org/10.1016/j.scs.2021.102990

    Article  Google Scholar 

  47. Senanayake NM, Carter JLW, Bowman CL, Ellis DL, Stuckner J (2022) A data-driven framework to select a cost-efficient subset of parameters to qualify sourced materials. Integr Mater Manuf Innov 11(3):339–351. https://doi.org/10.1007/s40192-022-00266-3

    Article  Google Scholar 

  48. Xia W et al (2022) Materials informatics-guided superior electrocatalyst: a case of pyrolysis-free single-atom coordinated with N-graphene nanomesh. Nano Energy. https://doi.org/10.1016/j.nanoen.2021.106868

    Article  PubMed  PubMed Central  Google Scholar 

  49. Adamu H, Abba SI, Anyin PB, Sani Y, Yamani ZH, Qamar M (2022) Tuning OER electrocatalysts toward LOM pathway through the lens of multi-descriptor feature selection by artificial intelligence-based approach. ACS Mater Lett 5(2):299–320. https://doi.org/10.1021/acsmaterialslett.2c00734

    Article  CAS  Google Scholar 

  50. Xu B et al (2022) Design of Ni-based turbine disc superalloys with improved yield strength using machine learning. J Mater Sci 57(22):10379–10394. https://doi.org/10.1007/s10853-022-07295-5

    Article  CAS  ADS  Google Scholar 

  51. Völker C, Firdous R, Stephan D, Kruschwitz S (2021) Sequential learning to accelerate discovery of alkali-activated binders. J Mater Sci 56(28):15859–15881. https://doi.org/10.1007/s10853-021-06324-z

    Article  CAS  ADS  Google Scholar 

  52. Cao W, Li T, Liang C, Wang C (2022) Design of high energy-storage properties in eco-friendly AgNbO3-based ceramics via two-step sintering method and tuning phase boundary. J Mater Sci 57(45):21000–21008. https://doi.org/10.1007/s10853-022-07964-5

    Article  CAS  ADS  Google Scholar 

  53. Kern J, Chen L, Kim C, Ramprasad R (2021) Design of polymers for energy storage capacitors using machine learning and evolutionary algorithms. J Mater Sci 56(35):19623–19635. https://doi.org/10.1007/s10853-021-06520-x

    Article  CAS  ADS  Google Scholar 

  54. Kankanamge UMHU, Reiner J, Ma X, Gallo SC, Xu W (2022) Machine learning guided alloy design of high-temperature NiTiHf shape memory alloys. J Mater Sci 57(41):19447–19465. https://doi.org/10.1007/s10853-022-07793-6

    Article  CAS  ADS  Google Scholar 

  55. Al-Zyoud I, Laamarti F, Ma X, Tobón D, El Saddik A (2022) Towards a machine learning-based digital twin for non-invasive human bio-signal fusion. Sensors 22(24):9747–9747. https://doi.org/10.3390/s22249747

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  56. Cao C et al (2018) Deep learning and its applications in biomedicine. Genomics Proteomics Bioinform 16(1):17–32. https://doi.org/10.1016/j.gpb.2017.07.003

    Article  Google Scholar 

  57. Chen X, Cheng G, Wang FL, Tao X, Xie H, Xu L (2022) Machine and cognitive intelligence for human health: systematic review. Brain Inform 9(1):5–5. https://doi.org/10.1186/s40708-022-00153-9

    Article  PubMed  PubMed Central  Google Scholar 

  58. Raghupathi W, Raghupathi V (2014) Big data analytics in healthcare: promise and potential. In: Health Information Science and Systems, vol 2, ed

  59. Rokni SA, Nourollahi M, Alinia P, Mirzadeh I, Pedram M, Ghasemzadeh H (2021) TransNet. ACM Trans Des Autom Electron Syst 26(1):1–31. https://doi.org/10.1145/3414062

    Article  Google Scholar 

  60. Suzuki H et al (2022) How AI application in pharmaceutical industries is beneficial to materials science. J Phys D: Appl Phys. https://doi.org/10.1088/1361-6463/ac3a48

    Article  Google Scholar 

  61. Ozdemir HC, Bedir E, Yilmaz R, Yagci MB, Canadinc D (2022) Machine learning-assisted design of biomedical high entropy alloys with low elastic modulus for orthopedic implants. J Mater Sci 57(24):11151–11169. https://doi.org/10.1007/s10853-022-07363-w

    Article  CAS  ADS  Google Scholar 

  62. Charitidis C, Sebastiani M, Goldbeck G (2022) Fostering research and innovation in materials manufacturing for Industry 5.0: the key role of domain intertwining between materials characterization, modelling and data science. Mater Des 223:555. https://doi.org/10.1016/j.matdes.2022.111229

    Article  Google Scholar 

  63. Matsuda S, Lambard G, Sodeyama K (2022) Data-driven automated robotic experiments accelerate discovery of multi-component electrolyte for rechargeable Li–O2 batteries. Cell Rep Phys Sci. https://doi.org/10.1016/j.xcrp.2022.100832

    Article  Google Scholar 

  64. Takahashi K, Takahashi L (2023) Toward the golden age of materials informatics: perspective and opportunities. J Phys Chem Lett 14(20):4726–4733. https://doi.org/10.1021/acs.jpclett.3c00648

    Article  CAS  PubMed  Google Scholar 

  65. Pilania G, Liu XY (2018) Machine learning properties of binary wurtzite superlattices. J Mater Sci 53(9):6652–6664. https://doi.org/10.1007/s10853-018-1987-z

    Article  CAS  ADS  Google Scholar 

  66. Mannodi-Kanakkithodi A, Chan MKY (2022) Accelerated screening of functional atomic impurities in halide perovskites using high-throughput computations and machine learning. J Mater Sci 57(23):10736–10754. https://doi.org/10.1007/s10853-022-06998-z

    Article  CAS  ADS  Google Scholar 

  67. Meier S, Albuquerque RQ, Demleitner M, Ruckdäschel H (2022) Modeling glass transition temperatures of epoxy systems: a machine learning study. J Mater Sci 57(29):13991–14002. https://doi.org/10.1007/s10853-022-07372-9

    Article  CAS  ADS  Google Scholar 

  68. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101. https://doi.org/10.1016/j.cma.2016.02.001

    Article  MathSciNet  ADS  Google Scholar 

  69. Chen C, Ong SP (2021) AtomSets as a hierarchical transfer learning framework for small and large materials datasets. npj Comput Mater. https://doi.org/10.1038/s41524-021-00639-w

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gupta V et al (2021) Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data. Nat Commun 12(1):6595. https://doi.org/10.1038/s41467-021-26921-5

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Zhang Y, Ling C (2018) A strategy to apply machine learning to small datasets in materials science. npj Comput Mater. https://doi.org/10.1038/s41524-018-0081-z

    Article  Google Scholar 

  72. Yosipof A, Khalemsky A, Gelbard R, Senderowitz H (2022) Dynamic classification for materials-informatics: mining the solar cell space. Mol Inform 41(1):e2000173. https://doi.org/10.1002/minf.202000173

    Article  CAS  PubMed  Google Scholar 

  73. Ohno H (2021) Training data augmentation using generative models with statistical guarantees for materials informatics. Soft Comput 26(3):1181–1196. https://doi.org/10.1007/s00500-021-06533-3

    Article  Google Scholar 

  74. Bergerhoff G, Hundt R, Sievers R, Brown ID (1983) The inorganic crystal structure data base. J Chem Inf Comput Sci. https://doi.org/10.1021/ci00038a003

    Article  Google Scholar 

  75. Curtarolo S et al (2012) AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2012.02.002

    Article  Google Scholar 

  76. Jain A et al (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. In: APL Materials vol. 1, ed: American Institute of Physics Inc

  77. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM. https://doi.org/10.1007/s11837-013-0755-4

    Article  Google Scholar 

  78. Draxl C, Scheffler M (2018) NOMAD: the FAIR concept for big data-driven materials science. MRS Bull. https://doi.org/10.1557/mrs.2018.208

    Article  Google Scholar 

  79. Hu J et al (2022) MaterialsAtlas.org: a materials informatics web app platform for materials discovery and survey of state-of-the-art. npj Comput Mater 8(1):65–65. https://doi.org/10.1038/s41524-022-00750-6

    Article  ADS  Google Scholar 

  80. Mooser E, Pearson WB (1959) On the crystal chemistry of normal valence compounds. Acta Crystallogr A. https://doi.org/10.1107/s0365110x59002857

    Article  Google Scholar 

  81. Pettifor DG (1984) A chemical scale for crystal-structure maps. Solid State Commun. https://doi.org/10.1016/0038-1098(84)90765-8

    Article  Google Scholar 

  82. Saad Y, Gao D, Ngo T, Bobbitt S, Chelikowsky JR, Andreoni W (2012) Data mining for materials: computational experiments with AB compounds. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.85.104104

    Article  Google Scholar 

  83. Kojima T, Washio T, Hara S, Koishi M (2022) Search strategy for rare microstructure to optimize material properties of filled rubber using machine learning based simulation. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2022.111207

    Article  Google Scholar 

  84. Pilania G, Liu X-Y, Wang Z (2019) Data-enabled structure–property mappings for lanthanide-activated inorganic scintillators. J Mater Sci 54(11):8361–8380. https://doi.org/10.1007/s10853-019-03434-7

    Article  CAS  ADS  Google Scholar 

  85. Deringer VL, Caro MA, Csanyi G (2019) Machine learning interatomic potentials as emerging tools for materials science. Adv Mater 31(46):e1902765. https://doi.org/10.1002/adma.201902765

    Article  CAS  PubMed  Google Scholar 

  86. Goryaeva AM, Maillet J-B, Marinica M-C (2019) Towards better efficiency of interatomic linear machine learning potentials. Comput Mater Sci 166:200–209. https://doi.org/10.1016/j.commatsci.2019.04.043

    Article  Google Scholar 

  87. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2007.1131

    Article  PubMed  Google Scholar 

  88. Griffiths PR, Harris TAL (2021) Machine learning workflow for microparticle composite thin-film process–structure linkages. J Coat Technol Res 19(1):83–96. https://doi.org/10.1007/s11998-021-00512-x

    Article  CAS  Google Scholar 

  89. Mäkinen T et al (2022) Detection of the onset of yielding and creep failure from digital image correlation. Phys Rev Mater. https://doi.org/10.1103/PhysRevMaterials.6.103601

    Article  Google Scholar 

  90. Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.114.105503

    Article  PubMed  Google Scholar 

  91. Goldsmith BR, Boley M, Vreeken J, Scheffler M, Ghiringhelli LM (2017) Uncovering structure-property relationships of materials by subgroup discovery. N J Phys 19(1):555. https://doi.org/10.1088/1367-2630/aa57c2

    Article  Google Scholar 

  92. Meredig B, Wolverton C (2014) Dissolving the periodic table in cubic zirconia: Data mining to discover chemical trends. Chem Mater. https://doi.org/10.1021/cm403727z

    Article  Google Scholar 

  93. Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM (2018) SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Mater. https://doi.org/10.1103/PhysRevMaterials.2.083802

    Article  Google Scholar 

  94. Ouyang R, Ahmetcik E, Carbogno C, Scheffler M, Ghiringhelli LM (2019) Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO. J Phys Materials. https://doi.org/10.1088/2515-7639/ab077b

    Article  Google Scholar 

  95. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc: Ser B (Methodological). https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

  96. Xu Y, Qian Q (2022) i-SISSO: mutual information-based improved sure independent screening and sparsifying operator algorithm. Eng Appl Artif Intell 116:105442–105442. https://doi.org/10.1016/j.engappai.2022.105442

    Article  Google Scholar 

  97. Deml AM, O’Hayre R, Wolverton C, Stevanović V (2016) Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression. Phys Rev B. https://doi.org/10.1103/PhysRevB.93.085142

    Article  Google Scholar 

  98. Meredig B et al (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B – Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.89.094104

    Article  Google Scholar 

  99. Pilania G, Gubernatis JE, Lookman T (2015) Structure classification and melting temperature prediction in octet AB solids via machine learning. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.91.214302

    Article  Google Scholar 

  100. Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater. https://doi.org/10.1038/npjcompumats.2016.28

    Article  Google Scholar 

  101. Atsumi T et al (2022) Chemical composition data-driven machine-learning prediction for phase stability and materials properties of inorganic crystalline solids. Physica Status Solidi (B). https://doi.org/10.1002/pssb.202100525

    Article  Google Scholar 

  102. Mannodi-Kanakkithodi A et al (2022) Universal machine learning framework for defect predictions in zinc blende semiconductors. Patterns (N Y) 3(3):100450. https://doi.org/10.1016/j.patter.2022.100450

    Article  CAS  PubMed  Google Scholar 

  103. Geng X et al (2022) A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels. J Mater Sci Technol 107:207–215. https://doi.org/10.1016/j.jmst.2021.07.038

    Article  CAS  Google Scholar 

  104. Chaudhary N, Abu-Odeh A, Karaman I, Arróyave R (2017) A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels. J Mater Sci 52(18):11048–11076. https://doi.org/10.1007/s10853-017-1252-x

    Article  CAS  ADS  Google Scholar 

  105. Karakoç A, Keleş Ö (2020) A predictive failure framework for brittle porous materials via machine learning and geometric matching methods. J Mater Sci 55(11):4734–4747. https://doi.org/10.1007/s10853-019-04339-1

    Article  CAS  ADS  Google Scholar 

  106. Greasley J, Hosein P (2023) Exploring supervised machine learning for multi-phase identification and quantification from powder X-ray diffraction spectra. J Mater Sci 58(12):5334–5348. https://doi.org/10.1007/s10853-023-08343-4

    Article  CAS  ADS  Google Scholar 

  107. Yan F, Song K, Liu Y, Chen S, Chen J (2020) Predictions and mechanism analyses of the fatigue strength of steel based on machine learning. J Mater Sci 55(31):15334–15349. https://doi.org/10.1007/s10853-020-05091-7

    Article  CAS  ADS  Google Scholar 

  108. Assi M, Favre J, Fraczkiewicz A, Tancret F (2022) Machine learning-based model of surface tension of liquid metals: a step in designing multicomponent alloys for additive manufacturing. J Mater Sci. https://doi.org/10.1007/s10853-022-07441-z

    Article  Google Scholar 

  109. Geng X et al (2022) A data-driven machine learning approach to predict the hardenability curve of boron steels and assist alloy design. J Mater Sci 57(23):10755–10768. https://doi.org/10.1007/s10853-022-07132-9

    Article  CAS  ADS  Google Scholar 

  110. Long T, Long Z, Peng Z (2023) Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning. J Mater Sci 58(21):8833–8844. https://doi.org/10.1007/s10853-023-08528-x

    Article  CAS  Google Scholar 

  111. Halevy A, Norvig P, Pereira F (2009) The unreasonable effectiveness of data. IEEE Intell Syst 24(2):8–12

    Article  Google Scholar 

  112. Learning S-S (2006) Semi-supervised learning. CSZ2006. html

  113. Huo H et al (2019) Semi-supervised machine-learning classification of materials synthesis procedures. NPJ Comput Mater 5(1):62

    Article  ADS  Google Scholar 

  114. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press

  115. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell Res 4:237–285

    Article  Google Scholar 

  116. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Agrawal A, Choudhary A (2019) Deep materials informatics: applications of deep learning in materials science. MRS Commun 9(3):779–792. https://doi.org/10.1557/mrc.2019.73

    Article  CAS  ADS  Google Scholar 

  118. Jha D et al (2021) Enabling deeper learning on big data for materials informatics applications. Sci Rep. https://doi.org/10.1038/s41598-021-83193-1

    Article  PubMed  PubMed Central  Google Scholar 

  119. Qi Y et al (2023) Reversible densification and cooperative atomic movement induced “compaction” in vitreous silica: a new sight from deep neural network interatomic potentials. J Mater Sci 58(23):9515–9532. https://doi.org/10.1007/s10853-023-08599-w

    Article  CAS  ADS  Google Scholar 

  120. Deshpande S, Lengiewicz J, Bordas SPA (2022) Probabilistic deep learning for real-time large deformation simulations. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2022.115307

    Article  MathSciNet  Google Scholar 

  121. Karimi K et al (2023) Prediction of steel nanohardness by using graph neural networks on surface polycrystallinity maps. Scripta Mater. https://doi.org/10.1016/j.scriptamat.2023.115559

    Article  Google Scholar 

  122. Settles B (2009) Active learning literature survey

  123. Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N (2015) Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE 104(1):148–175

    Article  Google Scholar 

  124. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13:455–492

    Article  MathSciNet  Google Scholar 

  125. Tian Y et al (2021) Efficient estimation of material property curves and surfaces via active learning. Phys Rev Mater 5(1):013802

    Article  CAS  Google Scholar 

  126. Rappel H, Beex LA, Hale JS, Noels L, Bordas S (2020) A tutorial on Bayesian inference to identify material parameters in solid mechanics. Arch Comput Methods Eng 27:361–385

    Article  MathSciNet  Google Scholar 

  127. Wang K, Dowling AW (2022) Bayesian optimization for chemical products and functional materials. Curr Opin Chem Eng 36:100728

    Article  Google Scholar 

  128. Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7(1):1–9

    Article  Google Scholar 

  129. Yuan R et al (2018) Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv Mater 30(7):1702884

    Article  Google Scholar 

  130. Xue D et al (2017) An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater 125:532–541

    Article  CAS  ADS  Google Scholar 

  131. Gunning D, Stefik M, Choi J, Miller T, Stumpf S, Yang G-Z (2019) XAI—explainable artificial intelligence. Sci Robotics 4(37):eaay7120

  132. Arrieta AB et al (2020) Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion 58:82–115

    Article  Google Scholar 

  133. Khmaissia F et al (2018) Accelerating band gap prediction for solar materials using feature selection and regression techniques. Comput Mater Sci 147:304–315

    Article  CAS  Google Scholar 

  134. Balachandran PV, Xue D, Theiler J, Hogden J, Gubernatis JE, Lookman T (2018) Importance of feature selection in machine learning and adaptive design for materials. In: Materials discovery and design: by means of data science and optimal learning. Springer, Berlin, pp 59–79

  135. De Breuck P-P, Hautier G, Rignanese G-M (2021) Materials property prediction for limited datasets enabled by feature selection and joint learning with MODNet. npj Comput Mater 7(1):83

    Article  ADS  Google Scholar 

  136. Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018) A transfer learning approach for microstructure reconstruction and structure-property predictions. Sci Rep. https://doi.org/10.1038/s41598-018-31571-7

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tsubaki M, Mizoguchi T (2021) Quantum deep descriptor: physically informed transfer learning from small molecules to polymers. J Chem Theory Comput 17(12):7814–7821. https://doi.org/10.1021/acs.jctc.1c00568

    Article  CAS  PubMed  Google Scholar 

  138. Gupta A, Cecen A, Goyal S, Singh AK, Kalidindi SR (2015) Structure-property linkages using a data science approach: application to a non-metallic inclusion/steel composite system. Acta Mater. https://doi.org/10.1016/j.actamat.2015.02.045

    Article  Google Scholar 

  139. Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater. https://doi.org/10.1016/j.actamat.2011.06.051

    Article  Google Scholar 

  140. Niezgoda SR, Kanjarla AK, Kalidindi SR (2013) Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data. Integr Mater Manuf Innov. https://doi.org/10.1186/2193-9772-2-3

    Article  Google Scholar 

  141. Yabansu YC, Steinmetz P, Hötzer J, Kalidindi SR, Nestler B (2017) Extraction of reduced-order process-structure linkages from phase-field simulations. Acta Mater. https://doi.org/10.1016/j.actamat.2016.10.071

    Article  Google Scholar 

  142. Yang Z et al (2018) Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2018.05.014

    Article  Google Scholar 

  143. Li W, Vittorietti M, Jongbloed G, Sietsma J (2021) Microstructure–property relation and machine learning prediction of hole expansion capacity of high-strength steels. J Mater Sci 56(34):19228–19243. https://doi.org/10.1007/s10853-021-06496-8

    Article  CAS  ADS  Google Scholar 

  144. Kalidindi SR, Niezgoda SR, Landi G, Vachhani S, Fast T (2010) A novel framework for building materials knowledge systems. Comput Mater Continua 17(2)

  145. Fast T, Kalidindi SR (2011) Formulation and calibration of higher-order elastic localization relationships using the MKS approach. Acta Mater. https://doi.org/10.1016/j.actamat.2011.04.005

    Article  Google Scholar 

  146. Yabansu YC, Patel DK, Kalidindi SR (2014) Calibrated localization relationships for elastic response of polycrystalline aggregates. Acta Mater. https://doi.org/10.1016/j.actamat.2014.08.022

    Article  Google Scholar 

  147. Olfatbakhsh T, Milani AS (2022) A highly interpretable materials informatics approach for predicting microstructure-property relationship in fabric composites. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2021.109080

    Article  Google Scholar 

  148. Bostanabad R, Bui AT, Xie W, Apley DW, Chen W (2016) Stochastic microstructure characterization and reconstruction via supervised learning. Acta Mater. https://doi.org/10.1016/j.actamat.2015.09.044

    Article  Google Scholar 

  149. Fullwood DT, Niezgoda SR, Kalidindi SR (2008) Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater. https://doi.org/10.1016/j.actamat.2007.10.044

    Article  Google Scholar 

  150. Chen W, Iyer A, Bostanabad R (2022) Data centric design: a new approach to design of microstructural material systems. Engineering 10:89–98. https://doi.org/10.1016/j.eng.2021.05.022

    Article  CAS  Google Scholar 

  151. Baskaran A, Kane G, Biggs K, Hull R, Lewis D (2020) Adaptive characterization of microstructure dataset using a two stage machine learning approach. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2020.109593

    Article  Google Scholar 

  152. Motyl M, Madej Ł (2022) Supervised pearlitic–ferritic steel microstructure segmentation by U-Net convolutional neural network. Arch Civ Mech Eng. https://doi.org/10.1007/s43452-022-00531-4

    Article  Google Scholar 

  153. Liu R, Yabansu YC, Agrawal A, Kalidindi SR, Choudhary AN (2015) Machine learning approaches for elastic localization linkages in high-contrast composite materials. Integr Mater Manuf Innov. https://doi.org/10.1186/s40192-015-0042-z

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lubbers N, Lookman T, Barros K (2017) Inferring low-dimensional microstructure representations using convolutional neural networks. Phys Rev E. https://doi.org/10.1103/PhysRevE.96.052111

    Article  PubMed  Google Scholar 

  155. Yang Z et al (2019) Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches. Acta Mater. https://doi.org/10.1016/j.actamat.2018.12.045

    Article  Google Scholar 

  156. Swetlana S, Khatavkar N, Singh AK (2020) Development of Vickers hardness prediction models via microstructural analysis and machine learning. J Mater Sci 55(33):15845–15856. https://doi.org/10.1007/s10853-020-05153-w

    Article  CAS  ADS  Google Scholar 

  157. George J, Hautier G (2021) Chemist versus machine: traditional knowledge versus machine learning techniques. In: Trends in chemistry, vol 3

  158. Huang EW, et al (2022) Machine-learning and high-throughput studies for high-entropy materials. In: Materials science and engineering R: reports, vol. 147

  159. Jain A, Hautier G, Ong SP, Persson K (2016) New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J Mater Res 31

  160. Kerner J, Dogan A, von Recum H (2021) Machine learning and big data provide crucial insight for future biomaterials discovery and research. Acta Biomater 130

  161. Mahmood A, Wang J-L (2021) Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ Sci 14(1):90–105. https://doi.org/10.1039/D0EE02838J

    Article  CAS  Google Scholar 

  162. Niu C, Li S, Hu J, Dan Y, Cao Z, Li X (2020) Application of machine learning in material informatics: a survey. In: Cailiao Daobao/materials reports, 34

  163. Peterson GGC, Brgoch J (2021) Materials discovery through machine learning formation energy. J Phys Energy 3

  164. Qiao L, Liu Y, Zhu J (2021) A focused review on machine learning aided high-throughput methods in high entropy alloy. J Alloys Compd 877

  165. Saeki A, Kranthiraja K (2020) A high throughput molecular screening for organic electronics via machine learning: present status and perspective. Japan J Appl Phys 59

  166. Sendek AD, Ransom B, Cubuk ED, Pellouchoud LA, Nanda J, Reed EJ (2022) Machine learning modeling for accelerated battery materials design in the small data regime. Adv Energy Mater 12(31):2200553–2200553. https://doi.org/10.1002/aenm.202200553

    Article  CAS  Google Scholar 

  167. Vivanco-Benavides LE, Martínez-González CL, Mercado-Zúñiga C, Torres-Torres C (2022) Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: a review. Comput Mater Sci 201

  168. Huang EW et al (2022) Machine-learning and high-throughput studies for high-entropy materials. Mater Sci Eng: R: Rep. https://doi.org/10.1016/j.mser.2021.100645

    Article  Google Scholar 

  169. Alsaui AA, Alghofaili YA, Alghadeer M, Alharbi FH (2022) Resampling techniques for materials informatics: limitations in crystal point groups classification. J Chem Inf Model 62(15):3514–3523. https://doi.org/10.1021/acs.jcim.2c00666

    Article  CAS  PubMed  Google Scholar 

  170. Kohnert AA, Wirth BD, Wolverton C, Balachandran PV, Capolungo L (2023) Modeling materials under coupled extremes: enabling better predictions of performance. MRS Bull 47(11):1120–1127. https://doi.org/10.1557/s43577-022-00455-7

    Article  ADS  Google Scholar 

  171. Bhatt P, Pandey AK, Rajput A, Sharma KK, Moyez A, Tewari A (2023) A review on computational modeling of instability and degradation issues of halide perovskite photovoltaic materials. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1677

    Article  Google Scholar 

  172. Li C, Zheng K (2023) Methods, progresses, and opportunities of materials informatics. InfoMat. https://doi.org/10.1002/inf2.12425

    Article  Google Scholar 

  173. Garg R, Patra NR, Samal S, Babbar S, Parida K (2023) A review on accelerated development of skin-like MXene electrodes: from experimental to machine learning. Nanoscale 15(18):8110–8133. https://doi.org/10.1039/d2nr05969j

    Article  CAS  PubMed  Google Scholar 

  174. Ge M, Su F, Zhao Z, Su D (2020) Deep learning analysis on microscopic imaging in materials science. Mater Today Nano 11

  175. Eugene EA, Phillip WA, Dowling AW (2019) Data science-enabled molecular-to-systems engineering for sustainable water treatment. Curr Opin Chem Eng 26

  176. Frydrych K, et al (2021) Materials informatics for mechanical deformation: a review of applications and challenges. Materials 14

  177. Kadkhodaei S, Muñoz JA (2021) Cluster expansion of alloy theory: a review of historical development and modern innovations. JOM 73

  178. Kioupakis E, Chae S, Bushick K, Pant N, Zhang X, Lee W (2021) Theoretical characterization and computational discovery of ultra-wide-band-gap semiconductors with predictive atomistic calculations. J Mater Res 36

  179. Oaki Y, Igarashi Y (2021) Materials informatics for 2d materials combined with sparse modeling and chemical perspective: toward small-data-driven chemistry and materials science. Bull Chemical Soc Jpn 94

  180. Orii Y, Hirose S, Fujita A, Kobayashi M (2021) Development of materials informatics platform. J Photopolym Sci Technol 34

  181. Wang Z et al (2022) Data-driven materials innovation and applications. Adv Mater 34(36):e2104113. https://doi.org/10.1002/adma.202104113

    Article  CAS  PubMed  Google Scholar 

  182. Broderick S, Rajan K (2015) Informatics derived materials databases for multifunctional properties. Sci Technol Adv Mater 16

  183. Y. Xu, "Accomplishment and challenge of materials database toward big data," in Chinese Physics B vol. 27, ed, 2018.

  184. Alberi K, et al. (2019) The 2019 materials by design roadmap. J Phys D: Appl Phys 52

  185. Butler KT, Frost JM, Skelton JM, Svane KL, Walsh A (2016) Computational materials design of crystalline solids. Chem Soc Rev 45

  186. Dennis RV, Patil V, Andrews JL, Aldinger JP, Yadav GD, Banerjee S (2015) Hybrid nanostructured coatings for corrosion protection of base metals: a sustainability perspective. Mater Res Express 2

  187. Kalidindi SR (2015) Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials. Int Mater Rev 60

  188. Liu YH, et al (2019) High-throughput experiments facilitate materials innovation: a review. Sci China Technol Sci 62

  189. Lookman T, Balachandran PV, Xue D, Hogden J, Theiler J (2017) Statistical inference and adaptive design for materials discovery. Curr Opin Solid State Mater Sci 21:121–128

    Article  CAS  ADS  Google Scholar 

  190. Lookman T, Balachandran PV, Xue D, Yuan R (2019) Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput Mater 5

  191. Lu W, Xiao R, Yang J, Li H, Zhang W (2017) Data mining-aided materials discovery and optimization. J Materiomics 3

  192. Ludwig A (2019) Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Comput Mater 5

  193. Noh J, Gu GH, Kim S, Jung Y (2020) Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem Sci 11

  194. Oba F, Kumagai Y (2018) Design and exploration of semiconductors from first principles: a review of recent advances. Appl Phys Express 11

  195. Sinnott SB (2013) Material design and discovery with computational materials science. J Vacuum Sci Technol A: Vacuum Surf Films. https://doi.org/10.1116/1.4813689

    Article  Google Scholar 

  196. Takahashi K, Tanaka Y (2016) Materials informatics: a journey towards material design and synthesis. Dalton Trans 45

  197. Talapatra A, et al. (2019) Experiment design frameworks for accelerated discovery of targeted materials across scales. Front Mater 6

  198. Ward L, Wolverton C (2017) Atomistic calculations and materials informatics: a review. Curr Opin Solid State Mater Sci 21

  199. Yosipof A, Shimanovich K, Senderowitz H (2016) Materials informatics: statistical modeling in material science. Mol Inform 35

  200. Taylor CD (2015) Corrosion informatics: an integrated approach to modelling corrosion. Corros Eng Sci Technol 50

  201. Zhang X, Zhao C, Wang X (2015) A survey on knowledge representation in materials science and engineering: an ontological perspective. Comput Ind 73

  202. Anuoluwa Bamidele E, et al (2022) Discovery and prediction capabilities in metal-based nanomaterials: an overview of the application of machine learning techniques and some recent advances. Adv Eng Inform 52

  203. Chaikittisilp W, Yamauchi Y, Ariga K (2022) Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: what will be the next paradigm shift in nanoporous materials? Adv Mater 34

  204. Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN (2022) Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coordination Chem Rev 460

  205. Ju S, Shiomi J (2019) Materials informatics for heat transfer: recent progresses and perspectives. Nanoscale Microscale Thermophys Eng 23

  206. Mori T (2017) Novel principles and nanostructuring methods for enhanced thermoelectrics. Small 13

  207. Audus DJ, De Pablo JJ (2017) Polymer informatics: opportunities and challenges. ACS Macro Lett 6

  208. Callaway CP, et al (2022) The solution is the solution: data-driven elucidation of solution-to-device feature transfer for π-conjugated polymer semiconductors. ACS Appl Mater Interfaces 14

  209. McBride M, Liu A, Reichmanis E, Grover MA (2020) Toward data-enabled process optimization of deformable electronic polymer-based devices. Curr Opin Chem Eng 27:72–80. https://doi.org/10.1016/j.coche.2019.11.009

  210. Sattari K, Xie Y, Lin J (2021) Data-driven algorithms for inverse design of polymers. Soft Matter 17(33):7607–7622. https://doi.org/10.1039/D1SM00725D

    Article  CAS  PubMed  ADS  Google Scholar 

  211. Zhai C, Li T, Shi H, Yeo J (2020) Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence. J Mater Chem B 8

  212. Hatakeyama-Sato K (2022) Recent advances and challenges in experiment-oriented polymer informatics. Polym J 55(2):117–131. https://doi.org/10.1038/s41428-022-00734-9

    Article  CAS  Google Scholar 

  213. Sci T (2009) Sci2 tool. Indiana University and SciTech Strategies

  214. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media, https://doi.org/10.1136/qshc.2004.010033

  215. Batagelj V, Mrvar A (1998) Pajek-program for large network analysis. Connections 21(2)

  216. Batagelj V, Mrvar A (2004) Pajek: analysis and visualization of large networks

  217. Kirklin S et al (2015) The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput Mater. https://doi.org/10.1038/npjcompumats.2015.10

    Article  Google Scholar 

  218. Blaiszik B, Chard K, Pruyne J, Ananthakrishnan R, Tuecke S, Foster I (2016) The materials data facility: data services to advance materials science research. JOM 68(8):2045–2052. https://doi.org/10.1007/s11837-016-2001-3

    Article  Google Scholar 

  219. Puchala B, Tarcea G, Marquis EA, Hedstrom M, Jagadish HV, Allison JE (2016) The materials commons: a collaboration platform and information repository for the global materials community. JOM 68(8):2035–2044. https://doi.org/10.1007/s11837-016-1998-7

    Article  Google Scholar 

  220. Choudhary K et al (2020) The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput Mater. https://doi.org/10.1038/s41524-020-00440-1

    Article  Google Scholar 

  221. Curtarolo S et al (2012) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2012.02.005

    Article  Google Scholar 

  222. Villars P, et al (2004) The pauling file, binaries edition. J Alloys Compd 367: 1–2. https://doi.org/10.1016/j.jallcom.2003.08.058

  223. "AFLOWLIB Website." https://aflowlib.org/. Accessed 5 April 2023

  224. Materials Project Website. https://materialsproject.org/. Accessed 5 April 2023

  225. Shen J et al (2022) Reflections on one million compounds in the open quantum materials database (OQMD). J Phys: Mater 5(3):031001. https://doi.org/10.1088/2515-7639/ac7ba9

    Article  MathSciNet  Google Scholar 

  226. OQMD Website. https://www.oqmd.org/download/. Accessed 5 April 2023

  227. Chard K, Pruyne J, Blaiszik B, Ananthakrishnan R, Tuecke S, Foster I (2015) Globus data publication as a service: lowering barriers to reproducible science. In: 2015 IEEE 11th International conference on e-science, 31 Aug–4 Sept 2015, pp 401–410, https://doi.org/10.1109/eScience.2015.68

  228. Smith M, et al. (2003) DSpace. D-Lib Magazine 9(1). doi:https://doi.org/10.1045/january2003-smith

  229. Materials Data Facility. https://materialsdatafacility.org/. Accessed 5 April 2023

  230. Aagesen LK et al (2018) PRISMS: an integrated, open-source framework for accelerating predictive structural materials science. JOM 70(10):2298–2314. https://doi.org/10.1007/s11837-018-3079-6

    Article  CAS  Google Scholar 

  231. MaterialsCommons. https://materialscommons.org/. Accessed 5 April 2023

  232. DeepStream. https://deepstream.io/. Accessed 5 April 2023

  233. "RethinkDB." https://rethinkdb.com/ (accessed April 5, 2023).

  234. ElasticSearch. https://www.elastic.co. Accessed 5 April 2023

  235. Yamazaki M, Xu Y, Murata M, Tanaka H, Kamihira K, Kimura K (2007) NIMS structural materials databases and cross search engine œ MatNavi. BALTICA VII, p 193

  236. MatNavi Website. https://mits.nims.go.jp/. Accessed 5 April 2023

  237. Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA (2011) The potential of atomistic simulations and the knowledgebase of interatomic models. JOM 63(7):17–17. https://doi.org/10.1007/s11837-011-0102-6

    Article  Google Scholar 

  238. "OpenKIM Website." https://openkim.org/. Accessed 5 April 2023

  239. Materials Data Repository Website. https://materialsdata.nist.gov/. Accessed 5 April 2023

  240. CHiMaD Website. https://chimad.northwestern.edu/. Accessed 5 April 2023

  241. Matweb Website. https://www.matweb.com/. Accessed 5 April 2023.

  242. JARVIS Website. https://jarvis.nist.gov/. Accessed 5 April 2023

  243. Martin RM (2013) Electronic structure basic theory and practical methods. J Chem Inf Model

  244. Kokiopoulou E, Saad Y (2005) Orthogonal neighborhood preserving projections. In: Fifth IEEE international conference on data mining (ICDM'05), 27–30 Nov 2005, p 8, https://doi.org/10.1109/ICDM.2005.113

  245. Liu Y, Cui J, Qie C, Jiang B, Li Y, Zhao X (2022) Automatic identification of MALDI-TOF MS database using classical bordetella species isolates. Comput Math Methods Med 2022:1679951. https://doi.org/10.1155/2022/1679951

    Article  PubMed  PubMed Central  Google Scholar 

  246. Curtarolo S, Morgan D, Persson K, Rodgers J, Ceder G (2003) Predicting crystal structures with data mining of quantum calculations. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.91.135503

    Article  PubMed  Google Scholar 

  247. Fischer CC, Tibbetts KJ, Morgan D, Ceder G (2006) Predicting crystal structure by merging data mining with quantum mechanics. Nat Mater. https://doi.org/10.1038/nmat1691

    Article  PubMed  Google Scholar 

  248. Nelson LJ, Hart GLW, Zhou F, Ozoliņš V (2013) Compressive sensing as a paradigm for building physics models. Phys Rev B – Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.87.035125

    Article  Google Scholar 

  249. Pelleg D, Moore A (2015) X-means: extending K-means with Efficient estimation of the number of clusters. In: CEUR workshop proceedings, vol 1542

  250. Legrain F, Carrete J, Van Roekeghem A, Curtarolo S, Mingo N (2017) How chemical composition alone can predict vibrational free energies and entropies of solids. Chem Mater. https://doi.org/10.1021/acs.chemmater.7b00789

    Article  Google Scholar 

  251. Boley M, Moens S, Gärtner T (2012) Linear space direct pattern sampling using coupling from the past. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, https://doi.org/10.1145/2339530.2339545

  252. Koza JR, Poli R (2005) Genetic programming. In: Burke K, Kendall G (eds) Search methodologies: introductory tutorials in optimization and decision support techniques, Boston, MA: Springer US, pp 127–164

  253. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  PubMed  Google Scholar 

  254. Yan J et al (2015) Material descriptors for predicting thermoelectric performance. Energy Environ Sci. https://doi.org/10.1039/c4ee03157a

    Article  Google Scholar 

  255. Dey P et al (2014) Informatics-aided bandgap engineering for solar materials. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2013.10.016

    Article  Google Scholar 

  256. Stevanović V, Lany S, Zhang X, Zunger A (2012) Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.85.115104

    Article  Google Scholar 

  257. Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A (2017) Quantum-chemical insights from deep tensor neural networks. Nat Commun. https://doi.org/10.1038/ncomms13890

    Article  PubMed  PubMed Central  Google Scholar 

  258. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR (2018) SchNet: a deep learning architecture for molecules and materials. J Chem Phys. https://doi.org/10.1063/1.5019779

    Article  PubMed  Google Scholar 

  259. Jha D et al (2018) ElemNet: deep learning the chemistry of materials from only elemental composition. Sci Rep. https://doi.org/10.1038/s41598-018-35934-y

    Article  PubMed  PubMed Central  Google Scholar 

  260. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: ICML 2010—proceedings, 27th international conference on machine learning

  261. O'Shea K, Nash R (2015) An introduction to convolutional neural networks, arXiv preprint arXiv:1511.08458

  262. Gao Q, Roth S (2014) Texture synthesis: from convolutional RBMs to efficient deterministic algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, in Structural, Syntactic, and Statistical Pattern Recognition, pp 434–443

  263. Gatys LA, Ecker AS, Bethge M (2015) Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. arXiv preprint, 2015

  264. Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78(10):1550–1560

    Article  Google Scholar 

  265. Chen G, Tao L, Li Y (2021) Predicting polymers’ glass transition temperature by a chemical language processing model. Polymers 13(11):1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Zheng S, Yan X, Yang Y, Xu J (2019) Identifying structure–property relationships through SMILES syntax analysis with self-attention mechanism. J Chem Inf Model 59(2):914–923

    Article  CAS  PubMed  Google Scholar 

  267. Arús-Pous J et al (2019) Randomized SMILES strings improve the quality of molecular generative models. J Cheminform 11(1):1–13

    Article  Google Scholar 

  268. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  CAS  PubMed  Google Scholar 

  269. Cho K, et al. (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078

  270. Miah MSU, Sulaiman J, Sarwar TB, Ibrahim N, Masuduzzaman M, Jose R (2023) An automated materials and processes identification tool for material informatics using deep learning approach. Heliyon 9(9)

  271. Goodfellow I, et al (2014) Generative adversarial nets. Advances in neural information processing systems, vol 27

  272. Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B (2018) High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8798–8807

  273. Yang Z, Li X, Catherine Brinson L, Choudhary AN, Chen W, Agrawal A (2018) Microstructural materials design via deep adversarial learning methodology. J Mech Des 140(11):111416

    Article  Google Scholar 

  274. Ma W, et al. (2020) Image-driven discriminative and generative machine learning algorithms for establishing microstructure–processing relationships. J Appl Phys 128(13)

  275. Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y (2019) Recent progress on generative adversarial networks (GANs): a survey. IEEE Access 7:36322–36333

    Article  Google Scholar 

  276. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  PubMed  Google Scholar 

  277. Kingma DP, Welling M (2013) Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114

  278. Ryan K, Lengyel J, Shatruk M (2018) Crystal structure prediction via deep learning. J Am Chem Soc 140(32):10158–10168. https://doi.org/10.1021/jacs.8b03913

    Article  CAS  PubMed  Google Scholar 

  279. Yamaguchi Y et al (2023) Drawing a materials map with an autoencoder for lithium ionic conductors. Sci Rep 13(1):16799. https://doi.org/10.1038/s41598-023-43921-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  280. Reiser P et al (2022) Graph neural networks for materials science and chemistry. Commun Mater 3(1):93. https://doi.org/10.1038/s43246-022-00315-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24

    Article  MathSciNet  Google Scholar 

  282. Karamad M, Magar R, Shi Y, Siahrostami S, Gates ID, Barati Farimani A (2020) Orbital graph convolutional neural network for material property prediction. Phys Rev Mater. https://doi.org/10.1103/PhysRevMaterials.4.093801

    Article  Google Scholar 

  283. Schütt K, Kindermans P-J, Sauceda Felix HE, Chmiela S, Tkatchenko A, Müller K-R (2017) Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. Advances in neural information processing systems, 30

  284. Choudhary K, DeCost B (2021) Atomistic line graph neural network for improved materials property predictions. NPJ Comput Mater. https://doi.org/10.1038/s41524-021-00650-1

    Article  Google Scholar 

  285. Shalev-Shwartz S, Shammah S, Shashua A (2016) Safe, multi-agent, reinforcement learning for autonomous driving, arXiv preprint arXiv:1610.03295

  286. Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4(7): eaap7885. https://doi.org/10.1126/sciadv.aap7885

  287. Sui F, Guo R, Zhang Z, Gu GX, Lin L (2021) Deep reinforcement learning for digital materials design. ACS Mater Lett 3(10):1433–1439. https://doi.org/10.1021/acsmaterialslett.1c00390

    Article  CAS  Google Scholar 

  288. Batty M (2018) Digital twins, vol. 45. SAGE Publications Sage UK: London, England, pp 817–820

  289. Raissi M, Perdikaris P, Karniadakis G (2019) A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  MathSciNet  ADS  Google Scholar 

  290. Lee S, Popovics J (2022) Applications of physics-informed neural networks for property characterization of complex materials. RILEM Techn Lett 7:178–188

    Article  Google Scholar 

  291. Nikolaev P et al (2016) Autonomy in materials research: a case study in carbon nanotube growth. npj Comput Mater 2(1):1–6

    Article  Google Scholar 

  292. Correa-Baena J-P et al (2018) Accelerating materials development via automation, machine learning, and high-performance computing. Joule 2(8):1410–1420

    Article  CAS  Google Scholar 

  293. Häse F, Roch LM, Aspuru-Guzik A (2019) Next-generation experimentation with self-driving laboratories. Trends Chem 1(3):282–291

    Article  Google Scholar 

  294. Rad MT, Viardin A, Schmitz G, Apel M (2020) Theory-training deep neural networks for an alloy solidification benchmark problem. Comput Mater Sci 180:109687

    Article  Google Scholar 

  295. Haghighat E, Raissi M, Moure A, Gomez H, Juanes R (2020) A deep learning framework for solution and discovery in solid mechanics, arXiv preprint arXiv:2003.02751

  296. Heider Y, Wang K, Sun W (2020) SO(3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic materials. Comput Methods Appl Mech Eng 363:112875

    Article  MathSciNet  ADS  Google Scholar 

  297. Chen C-T, Gu GX (2021) Learning hidden elasticity with deep neural networks. Proc Natl Acad Sci 118(31):e2102721118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Alzubaidi L et al (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. https://doi.org/10.1186/s40537-021-00444-8

    Article  PubMed  PubMed Central  Google Scholar 

  299. Lee S, Jha D, Agrawal A, Choudhary A, Liao W-K (2017) Parallel deep convolutional neural network training by exploiting the overlapping of computation and communication. In: 2017 IEEE 24th International conference on high performance computing (HiPC), IEEE, pp 183–192, https://doi.org/10.1109/HiPC.2017.00030

  300. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate, arXiv preprint arXiv:1409.0473

  301. Vaswani A, et al (2017) Attention is all you need. Advances in neural information processing systems, 30

  302. Brown T et al (2020) Language models are few-shot learners. Adv Neural Inf Process Syst 33:1877–1901

    Google Scholar 

  303. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsupervised multitask learners. OpenAI blog 1(8):9

    Google Scholar 

  304. Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL HLT 2019–2019 conference of the North American Chapter of the Association for computational linguistics: human language technologies—proceedings of the conference, vol 1

  305. ChatGPT Overview. https://openai.com/chatgpt

  306. Bard Overview. https://ai.google/static/documents/google-about-bard.pdf. Accessed 3 Jan 2024

  307. Zheng X, Zhang C, Woodland PC (2021) Adapting GPT, GPT-2 and BERT language models for speech recognition. In: 2021 IEEE Automatic speech recognition and understanding workshop (ASRU), 13–17 Dec 2021, pp 162–168. https://doi.org/10.1109/ASRU51503.2021.9688232

  308. Shrivastava A, Pupale R, Singh P (2021) Enhancing aggression detection using GPT-2 based data balancing technique. In: 2021 5th International conference on intelligent computing and control systems (ICICCS), 6–8 May 2021, pp 1345–1350, https://doi.org/10.1109/ICICCS51141.2021.9432283

  309. Lammerse M, Hassan SZ, Sabet SS, Riegler MA, Halvorsen P (2022) Human vs. GPT-3: the challenges of extracting emotions from child responses. In: 2022 14th International conference on quality of multimedia experience (QoMEX), 5–7 Sept. 2022, pp 1–4, https://doi.org/10.1109/QoMEX55416.2022.9900885

  310. Tlili A et al (2023) What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learn Environ. https://doi.org/10.1186/s40561-023-00237-x

    Article  Google Scholar 

  311. Schneider ETR, Souza JVAD, Gumiel YB, Moro C, Paraiso EC (2021) A GPT-2 language model for biomedical texts in Portuguese. In: 2021 IEEE 34th International symposium on computer-based medical systems (CBMS), 7–9 June 2021, pp 474–479, https://doi.org/10.1109/CBMS52027.2021.00056

  312. Xie T, et al (2023) Large language models as master key: unlocking the secrets of materials science. Available at SSRN 4534137

  313. Zheng Z, Zhang O, Borgs C, Chayes JT, Yaghi OM (2023) ChatGPT chemistry assistant for text mining and prediction of MOF synthesis, arXiv preprint arXiv:2306.11296

  314. Zheng Z, et al. (2023) Shaping the water-harvesting behavior of metal–organic frameworks aided by fine-tuned GPT models. J Am Chem Soc

  315. Zhu Y, et al. (2015) Aligning books and movies: towards story-like visual explanations by watching movies and reading books. In: 2015 IEEE international conference on computer vision (ICCV), IEEE, pp 19–27, https://doi.org/10.1109/ICCV.2015.11

  316. Sanh V, Debut L, Chaumond J, Wolf T (2019) DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, arXiv preprint arXiv:1910.01108

  317. Liu Y, et al (2019) Roberta: a robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692

  318. Gu Y et al (2021) Domain-specific language model pretraining for biomedical natural language processing. ACM Trans Comput Healthc 3(1):1–23. https://doi.org/10.1145/3458754

    Article  CAS  Google Scholar 

  319. Beltagy I, Lo K, Cohan A (2019) SCIBERT: a pretrained language model for scientific text. In: EMNLP-IJCNLP 2019–2019 conference on empirical methods in natural language processing and 9th international joint conference on natural language processing, proceedings of the conference, https://doi.org/10.18653/v1/d19-1371

  320. Lee J et al (2020) BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz682

    Article  PubMed  PubMed Central  Google Scholar 

  321. Alsentzer E, et al (2019) Publicly available clinical. In: Proceedings of the 2nd clinical natural language processing workshop, Stroudsburg, PA, USA, 2019: Association for Computational Linguistics, pp 72–78, https://doi.org/10.18653/v1/W19-1909

  322. Lee JS, Hsiang J (2020) Patent classification by fine-tuning BERT language model. World Patent Information, vol 61. https://doi.org/10.1016/j.wpi.2020.101965

  323. Araci D (2019) Finbert: financial sentiment analysis with pre-trained language models, arXiv preprint arXiv:1908.10063

  324. Trewartha A et al (2022) Quantifying the advantage of domain-specific pre-training on named entity recognition tasks in materials science. Patterns (NY) 3(4):100488. https://doi.org/10.1016/j.patter.2022.100488

    Article  Google Scholar 

  325. Gupta T, Zaki M, Krishnan NMA, Mausam (2022) MatSciBERT: a materials domain language model for text mining and information extraction. npj Comput Mater 8(1):555https://doi.org/10.1038/s41524-022-00784-w

  326. Yoshitake M, Sato F, Kawano H, Teraoka H (2022) MaterialBERT for natural language processing of materials science texts. Sci Technol Adv Mater: Methods 2(1):372–380. https://doi.org/10.1080/27660400.2022.2124831

    Article  Google Scholar 

  327. Shetty P et al (2023) A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing. NPJ Comput Mater 9(1):52. https://doi.org/10.1038/s41524-023-01003-w

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  328. Kumar A, Ganesh S, Gupta D, Kodamana H (2022) A text mining framework for screening catalysts and critical process parameters from scientific literature: a study on Hydrogen production from alcohol. Chem Eng Res Des 184:90–102. https://doi.org/10.1016/j.cherd.2022.05.018

    Article  CAS  Google Scholar 

  329. Huang S, Cole JM (2022) BatteryBERT: a pretrained language model for battery database enhancement. J Chem Inf Model 62(24):6365–6377. https://doi.org/10.1021/acs.jcim.2c00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Kumar A, Bakshi BR, Ramteke M, Kodamana H (2023) Recycle-BERT: extracting knowledge about plastic waste recycling by natural language processing. ACS Sustain Chem Eng 11(32):12123–12134. https://doi.org/10.1021/acssuschemeng.3c03162

    Article  CAS  Google Scholar 

  331. Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR (2010) Microstructure sensitive design for performance optimization. Prog Mater Sci 55(6):477–562. https://doi.org/10.1016/j.pmatsci.2009.08.002

    Article  CAS  Google Scholar 

  332. Gokhale AM (2018) Quantitative characterization and representation of global microstructural geometry. Metallography Microstruct

  333. Liu Y, Steven Greene M, Chen W, Dikin DA, Liu WK (2013) Computational microstructure characterization and reconstruction for stochastic multiscale material design. CAD Comput Aided Des. https://doi.org/10.1016/j.cad.2012.03.007

    Article  Google Scholar 

  334. Niezgoda SR, Fullwood DT, Kalidindi SR (2008) Delineation of the space of 2-point correlations in a composite material system. Acta Mater. https://doi.org/10.1016/j.actamat.2008.07.005

    Article  Google Scholar 

  335. Sundararaghavan V (2014) Reconstruction of three-dimensional anisotropic microstructures from two-dimensional micrographs imaged on orthogonal planes. Integr Mater Manuf Innov. https://doi.org/10.1186/s40192-014-0019-3

    Article  Google Scholar 

  336. Decost BL, Holm EA (2015) A computer vision approach for automated analysis and classification of microstructural image data. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2015.08.011

    Article  Google Scholar 

  337. DeCost BL, Francis T, Holm EA (2017) Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. https://doi.org/10.1016/j.actamat.2017.05.014

    Article  Google Scholar 

  338. Liu R, Yabansu YC, Yang Z, Choudhary AN, Kalidindi SR, Agrawal A (2017) Context aware machine learning approaches for modeling elastic localization in three-dimensional composite microstructures. Integr Mater Manuf Innov. https://doi.org/10.1007/s40192-017-0094-3

    Article  PubMed  PubMed Central  Google Scholar 

  339. Da Silva BC, Basso EW, Bazzan ALC, Engel PM (2006) Dealing with non-stationary environments using context detection. In: ACM International conference proceeding series, vol. 148, https://doi.org/10.1145/1143844.1143872

  340. Dillon M (1983) Introduction to modern information retrieval. Inf Process Manag. https://doi.org/10.1016/0306-4573(83)90062-6

    Article  Google Scholar 

  341. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2: IEEE, pp 1150–1157

  342. Jégou H, Douze M, Schmid C, Pérez P (2010) Aggregating local descriptors into a compact image representation. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2010.5540039

  343. Van Der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res vol 9

  344. Torralba A, Efros AA (2011) Unbiased look at dataset bias. In: Proceedings of the IEEE Computer society conference on computer vision and pattern recognition, https://doi.org/10.1109/CVPR.2011.5995347

Download references

Acknowledgements

This work was supported by the Research and Innovation Department of Universiti Malaysia Pahang through the First-in-the-world grant RDU223101, Post-graduate research scheme grant PGRS220373 and Doctoral research scheme grant UMP.20.03/13/13.14/1.

Author information

Authors and Affiliations

Authors

Contributions

D.S., R.J., A.A., S.K. and S.R. designed and discussed the content of the review. D.S., R.J., V.R. and I.M. wrote the review. All the authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Rajan Jose.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

There are no ethical issues regarding the content of this paper.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivan, D., Satheesh Kumar, K., Abdullah, A. et al. Advances in materials informatics: a review. J Mater Sci 59, 2602–2643 (2024). https://doi.org/10.1007/s10853-024-09379-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09379-w

Navigation