Skip to main content
Log in

Structural characterization of polycrystalline thin films by X-ray diffraction techniques

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

X-ray diffraction (XRD) techniques are powerful, non-destructive characterization tool with minimal sample preparation. XRD provides the first information about the materials phases, crystalline structure, average crystallite size, micro and macro strain, orientation parameter, texture coefficient, degree of crystallinity, crystal defects etc. XRD analysis provides information about the bulk, polycrystalline thin films, and multilayer structures, which is very important in various scientific and material engineering fields. This review discusses the diffraction related phenomena/principles such as powder X-ray diffraction, and thin-film/grazing incidence X-ray diffraction (GIXRD) comprehensively for thin film samples which are used frequently in various branches of science and technology. The review also covers few case studies on polycrystalline thin-film samples related to phase analysis, preferred orientation parameter (texture coefficient) analysis, stress evaluation in thin films and multilayer, multiphase content identification, bifurcation of multiphase on multilayer samples, depth profiling in thin-film/ multilayer structures, the impact of doping effect on structural properties of thin films etc., comprehensively using GIXRD/XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Ref. [25])

Fig. 4

adapted from Ref. [25])

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Ohring, The Materials Science of Thin Film, 2nd edn. (Academic Press, Boston, 1992).

    Google Scholar 

  2. S.C. Tjong, H. Chen, Nanocrystalline materials and coatings. Mater. Sci. Eng. R 45, 1–88 (2004). https://doi.org/10.1016/j.mser.2004.07.001

    Article  CAS  Google Scholar 

  3. P. Muralt, Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000). https://doi.org/10.1088/0960-1317/10/2/307

    Article  CAS  Google Scholar 

  4. S.M. Sze, Semiconductor Devices: Physics and Technology, 2nd edn. (Wiley India Pvt, Chichester, 2008).

    Google Scholar 

  5. F.A. Vittoria, M. Endrizzi, P.C. Diemoz, A. Zamir, U.H. Wagner, C. Rau, I.K. Robinson, A. Olivo, X-ray absorption, phase and dark-field tomography through a beam tracking approach. Sci. Rep. 5, 16318 (2015). https://doi.org/10.1038/srep16318

    Article  CAS  Google Scholar 

  6. A. Gibaud, S. Hazra, X-ray reflectivity and diffuse scattering. Curr. Sci. 78(12), 1467–1477 (2000)

    CAS  Google Scholar 

  7. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice-Hall, Englewood Cliffs, 2001).

    Google Scholar 

  8. C. Suryanarayana, X-Ray Diffraction: A Practical Approach (Springer, M. Grant Norton, 1998).

    Book  Google Scholar 

  9. L.V. Azaroff, Elements of X-Ray Crystallography (McGraw-Hill, New York, 1968).

    Google Scholar 

  10. C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, Chichester, 1976).

    Google Scholar 

  11. C. Giannini, M. Ladisa, D. Altamura, D. Siliqi, T. Sibillano, L. De Caro, X-ray diffraction: a powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals 10, 1–22 (2016). https://doi.org/10.3390/cryst6080087

    Article  CAS  Google Scholar 

  12. C.J. Benmore, A review of high-energy X-ray diffraction from glasses and liquids. Intl. Sch. Res. Notices (2012). https://doi.org/10.5402/2012/852905

    Article  Google Scholar 

  13. A.A. Bunaciu, E. GabrielaUdriştioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications. Crit. Rev. Anal. Chem. 45, 289–299 (2015). https://doi.org/10.1080/10408347.2014.949616

    Article  CAS  Google Scholar 

  14. M.A. Moram, M.E. Vickers, X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72, 036502 (2009)

    Article  Google Scholar 

  15. E.S. Ameh, A review of basic crystallography and X-ray diffraction applications. Int. J. Adv. Manuf. Technol. 105, 3289–3302 (2019). https://doi.org/10.1007/s00170-019-04508-1

    Article  Google Scholar 

  16. R Novelize, Squire's Fundamentals of Radiology. Harvard University Press. 5th edition. ISBN 0-674-83339-2, p. 1 (1997).

  17. W. Friedrich, P. Knipping, M. von Laue, Interferenz-Erscheinungen bei R€ ontgenstrahlen. Sitzungsber. Math.-Phys. Classe K€oniglich Bayerischen Akad. Wiss. M€unchen. 303–322 (1912).

  18. M. Eckert, Ann. Phys. (Berlin), 524 (5), A83–A85 (2012) https://doi.org/10.1002/andp.201200724.

  19. W.H. Bragg, W.L. Bragg, The reflexion of X-rays by crystals. Proc. R. Soc. Lond. A. 88(605), 428–438 (1913)

    Article  CAS  Google Scholar 

  20. D.K. Bowen, B.K. Tanner, High-Resolution X-Ray Diffractometry and Topography (CRC Press, Boca Raton, 2005).

    Google Scholar 

  21. G. Bauer, Optical Characterization of Epitaxial Semiconductor Layers (Springer, Berlin, 1996).

    Book  Google Scholar 

  22. P. F. Fewster, X-Ray Scattering from Semiconductors, Second Edition Imperial College Press, (2003).

  23. D. Taupin, Bull. Soc. Fr. Mineral. Cristallogr. 87, 469 (1964)

    CAS  Google Scholar 

  24. S. Takagi, J. Phys. Soc. Jpn. 26, 1239 (1969)

    Article  CAS  Google Scholar 

  25. PANalytical X-Pert Pro -MRD HRXRD manual

  26. M. Birkholz, Thin films analysis by X-Ray scattering, Wiley-VCH GmbH & Co. 2006.

  27. H.M. Rietveld, Line profiles of neutron powder diffraction peaks for structure refinement. Acta Crystallogr. 22, 151 (1967). https://doi.org/10.1107/S0365110X67000234

    Article  CAS  Google Scholar 

  28. H.M. Rietveld, A profile refinement method for nuclear and magnetic structure. J. Appl. Cryst. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  29. X. Orlhac, C. Fillet, P. Deniard, A.M. Dulac, R. Brec, Determination of the crystallized fractions of a largely amorphous multiphase material by the Rietveld method. J. Appl. Cryst. 34, 114–118 (2001). https://doi.org/10.1107/S0021889800017908

    Article  CAS  Google Scholar 

  30. S.M. Ohlberg, D.W. Strickler, Determination of percent crystallinity of partly devitrified glass by X-ray diffraction. J. Am. Ceram. Soc. 45, 170–171 (1962). https://doi.org/10.1111/j.1151-2916.1962.tb11114.x

    Article  CAS  Google Scholar 

  31. A.S. Goikhman, V.M. Irklei, O.S. Vavrinyuk, V.I. Pirogov, X-ray diffraction determination of the degree of crystallinity of cellulose using a computer. Fibre Chem. 24, 80–85 (1992). https://doi.org/10.1007/BF00557189

    Article  Google Scholar 

  32. W.L. Bond, Precision lattice constant determination. Acta Cryst. 13, 814 (1960). https://doi.org/10.1107/S0365110X60001941

    Article  CAS  Google Scholar 

  33. P.F. Fewster, Absolute lattice parameter measurement. J. Mater. Sci.: Mater. Electron. 10, 175–183 (1999). https://doi.org/10.1023/A:1008935709977

    Article  CAS  Google Scholar 

  34. M. Fatemi, Absolute measurement of lattice parameter in single crystals and epitaxic layers on a double-crystal X-ray diffractometer. Acta Crystallogr. A 61, 301–313 (2005). https://doi.org/10.1107/S0108767305004496

    Article  CAS  Google Scholar 

  35. P. Scherrer, Göttinger Nachrichten Gesell. 2, 98 (1918)

    Google Scholar 

  36. J.I. Langford, A.J.C. Wilson, Seherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  37. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  38. B.E. Warren, B.L. Averbach, J. Appl. Phys. 21, 595 (1950). https://doi.org/10.1063/1.1699713

    Article  CAS  Google Scholar 

  39. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012). https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  40. A. K. Singh (ed.), Advanced X-ray Techniques in Research and Industries, Ios Pr Inc, (2005). ISBN 1586035371.

  41. P.J. Withers, H.K.D.H. Bhadeshia, Residual stress. Part 1: measurement techniques. Mater. Sci. Technol. 17, 355–365 (2001). https://doi.org/10.1179/026708301101509980

    Article  CAS  Google Scholar 

  42. G.B. Harris, Quantitative measurement of preferred orientation in rolled uranium bars. Phil. Mag. Series 43, 336 (1952). https://doi.org/10.1080/14786440108520972

    Article  Google Scholar 

  43. M. Kumar, A. Kumar, A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films. ACS Appl. Mater. Interfaces. 7, 3571–3580 (2015). https://doi.org/10.1021/am507397z

    Article  CAS  Google Scholar 

  44. Y. Wang, W. Tang, L. Zhang, Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. J. Mater. Sci. Technol. 31(2), 175–181 (2015). https://doi.org/10.1016/j.jmst.2014.11.009

    Article  CAS  Google Scholar 

  45. I. C. Noyan, J. B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation (Springer-Verlag, New York, 1987). https://doi.org/10.1007/978-1-4613-9570-6

    Book  Google Scholar 

  46. S. K. Gupta, M.G. Gartley, International Centre for Diffraction Data (ICDD), the Denver X-ray Conference (DXC) 52 (1999).

  47. J.N. Reddy, Mechanics of Laminated Composite Plates (CRC Press, Boca Raton, 1997).

    Google Scholar 

  48. Q. Luo, A.H. Jones, High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sin2ψ technique. Surf. Coat. Tech. 205, 1403–1408 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.108

    Article  CAS  Google Scholar 

  49. C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films 418, 73–78 (2002). https://doi.org/10.1016/S0040-6090(02)00680-6

    Article  CAS  Google Scholar 

  50. Y. Xi, K. Gao, X. Pang, H. Yang, X. Xiong, H. Li, A.A. Volinsky, Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films. Ceram. Int. 43, 11992–11997 (2017). https://doi.org/10.1016/j.ceramint.2017.06.050

    Article  CAS  Google Scholar 

  51. M.K. Ozturk, E. Arslan, I. Kars, S. Ozcelik, E. Ozbay, Strain analysis of the GaN epitaxial layers grown on nitridated Si (111) substrate by metal organic chemical vapor deposition. Mater. Sci. Semicond. Process 16, 83–88 (2013). https://doi.org/10.1016/j.mssp.2012.06.013

    Article  CAS  Google Scholar 

  52. S. Chowdhury, D. Biswas, Impact of varying buffer thickness generated strain and threading dislocations on the formation of plasma assisted MBE grown ultra-thin AlGaN/GaN heterostructure on silicon. AIP Adv. 5, 057149 (2015). https://doi.org/10.1063/1.4921757

    Article  CAS  Google Scholar 

  53. A. Pandey, R. Raman, S. Dalal, D. Kaur, A.K. Kapoor, Structural and optical characteristics investigations in oxygen ion implanted GaN epitaxial layers. Mater. Sci. Semicond. Process. 107, 104833 (2020). https://doi.org/10.1016/j.mssp.2019.104833

    Article  CAS  Google Scholar 

  54. W.C. Marra, P. Eisenberger, A.Y. Cho, X-ray total-external-reflection–Bragg diffraction: a structural study of the GaAs-Al interface. J. Appl. Phys. 50, 6927 (1979). https://doi.org/10.1063/1.325845

    Article  CAS  Google Scholar 

  55. P. Colombi, P. Zanola, E. Bontempi, R. Roberti, Glancing-incidence X-ray diffraction for depth profiling of polycrystalline layers. J. Appl. Crystall. 10, 176–179 (2006). https://doi.org/10.1107/S0021889805042779

    Article  CAS  Google Scholar 

  56. P. Colombi, P. Zanola, E. Bontempi, L.E. Depero, Modeling of glancing incidence X-ray for depth profiling of thin layers. Spectrochim. Acta Part B 62, 554–557 (2007). https://doi.org/10.1016/j.sab.2007.02.012

    Article  CAS  Google Scholar 

  57. C.A.Ã. Kaufmann, R. Caballero, T. Unold, R. Hesse, R. Klenk, S. Schorr, M. Nichterwitz, H. Schock, Depth profiling of Cu (In, Ga)Se2 thin films grown at low temperatures. Solar Energy Mater Solar Cell 93, 859–863 (2009). https://doi.org/10.1016/j.solmat.2008.10.009

    Article  CAS  Google Scholar 

  58. X. Jin, Neutron Diffraction Principles, Instrumentation and Application (Nova Science Publishers, Inc., New York, 2013).

    Google Scholar 

  59. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 1996).

    Book  Google Scholar 

  60. X. Cong, X.L. Liu, M.L. Lin, P.H. Tan, Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. NPJ 2D Mater. Appl. 4, 1–12 (2020). https://doi.org/10.1038/s41699-020-0140-4

    Article  CAS  Google Scholar 

  61. B. Mednikarov, G. Spasov, T. Babeva, Aluminum nitride layers prepared by DC/RF magnetron sputtering. J. Optoelectron. Adv. Mater. 7, 1421–1427 (2005)

    CAS  Google Scholar 

  62. D. De-Faoite, D.J. Browne, F.R. Chang-Dıaz, K.T. Stanton, A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. J. Mater. Sci. 47, 4211–4235 (2012). https://doi.org/10.1007/s10853-011-6140-1

    Article  CAS  Google Scholar 

  63. C. Caliendo, P. Imperaton, E. Cianci, Structural, morphological and acoustic properties of AlN thick films sputtered on Si(001) and Si(111) substrates at low temperature. Thin Solid Films 441, 32–37 (2003). https://doi.org/10.1016/S0040-6090(03)00911-8

    Article  CAS  Google Scholar 

  64. K. Tonisch, V. Cimalla, C. Foerster, H. Romanus, O. Ambacher, D. Dontsov, Piezoelectric properties of polycrystalline AlN thin films for MEMS application. Sens. Actuators A 132, 658–663 (2006). https://doi.org/10.1016/j.sna.2006.03.001

    Article  CAS  Google Scholar 

  65. A. Ababneh, M. Alsumady, H. Seidel, T. Manzaneque, J. Hernando-García, J.L. Sanchez-Rojas, A. Bittner, U. Schmid, c-axis orientation and piezoelectric coefficients of AlN thin films sputter-deposited on titanium bottom electrodes. Appl. Surf. Sci. 259, 59–65 (2012). https://doi.org/10.1016/j.apsusc.2012.06.086

    Article  CAS  Google Scholar 

  66. A. Pandey, R. Prakash, S. Dutta, S. Dalal, A. Kumar, A.K. Kapoor, D. Kaur, Growth and morphological evolution of c-axis oriented AlN films on Si (100) substrates by DC sputtering technique. AIP Conf. Proc. 1953, 1–5 (2018). https://doi.org/10.1063/1.5032964

    Article  CAS  Google Scholar 

  67. A. Pandey, S. Dutta, R. Prakash, S. Dalal, R. Raman, A.K. Kapoor, D. Kaur, Growth and evolution of residual stress of AlN films on silicon (100) wafer. Mater. Sci. Semicond. Process. 52, 16–23 (2016). https://doi.org/10.1016/j.mssp.2016.05.004

    Article  CAS  Google Scholar 

  68. N. Gupta, A. Pandey, S.R.K. Vanjari, S. Dutta, Influence of residual stress on performance of AlN thin film based piezoelectric MEMS accelerometer structure. Microsyst. Technol. 25, 3959–3967 (2019). https://doi.org/10.1007/s00542-019-04334-1

    Article  CAS  Google Scholar 

  69. D. Holec, P.H. Mayrhofer, Surface energies of AlN allotropes from first principles. Scripta Mater. 67, 760–762 (2012). https://doi.org/10.1016/j.scriptamat.2012.07.027

    Article  CAS  Google Scholar 

  70. J.X. Zhang, H. Cheng, Y.Z. Chen, A. Uddin, S. Yuan, S.J. Geng, S. Zhang, Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering. Surf. Coat. Technol. 198, 68–73 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.075

    Article  CAS  Google Scholar 

  71. R. Ruh, A. Zangvil, J. Barlowe, Elastic properties of SiC, AIN, and their solid solutions and particulate composites. Am. Ceram. Soc. Bull. 64, 1368–1373 (1985)

    CAS  Google Scholar 

  72. K. Kim, W.R.L. Lambrecht, B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys. Rev. B 53, 16310 (1996). https://doi.org/10.1103/PhysRevB.53.16310

    Article  CAS  Google Scholar 

  73. S. Yu, R. Chen, G. Zhang, J. Cheng, Z. Meng, Ferroelectric enhancement in heterostructured ZnO/BiFeO3-PbTiO3 film. Appl. Phys. Lett. 89, 3–6 (2006). https://doi.org/10.1063/1.2393004.1

    Article  Google Scholar 

  74. S. Dutta, A. Pandey, I. Yadav, O.P. Thakur, R. Laishram, R. Pal, R. Chatterjee, Improved electrical properties of PbZrTiO3/BiFeO3 multilayers with ZnO buffer layer. J. Appl. Phys. 112, 084101 (2012). https://doi.org/10.1063/1.4759123

    Article  CAS  Google Scholar 

  75. S. Dutta, A. Pandey, O.P. Thakur, R. Pal, R. Chatterjee, Estimation of residual stress in Pb(Zr0.52Ti0.48)O3/BiFeO3 multilayers deposited on silicon. J. Appl. Phys. 114, 174103 (2013). https://doi.org/10.1063/1.4828874

    Article  CAS  Google Scholar 

  76. G.G. Stoney, The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A82, 172 (1909). https://doi.org/10.1098/rspa.1909.0021

    Article  Google Scholar 

  77. S. Dutta, A. Pandey, I. Yadav, O.P. Thakur, A. Kumar, R. Pal, R. Chatterjee, Growth and electrical properties of spin coated ultrathin ZrO2 films on silicon. J. Appl. Phys. 114, 014105 (2013). https://doi.org/10.1063/1.4812733

    Article  CAS  Google Scholar 

  78. M.J. Madau, Fundamental of Microfabrication-The Science of Miniaturization (CRC Press, Boca Raton, 2002).

    Book  Google Scholar 

  79. A. Pandey, S. Dutta, R. Prakash, R. Raman, A.K. Kapoor, D. Kaur, Growth and comparison of residual stress of AlN films on silicon (100), (110) and (111) substrates. J. Electron. Mater. 47, 1405–1413 (2018). https://doi.org/10.1007/s11664-017-5924-8

    Article  CAS  Google Scholar 

  80. A. Pandey, J. Kaushik, S. Dutta, A.K. Kapoor, D. Kaur, Electrical and structural characteristics of sputtered c-oriented AlN thin films on Si (100) and Si (110) substrates. Thin Solid Films 666, 143–149 (2018). https://doi.org/10.1016/j.tsf.2018.09.016

    Article  CAS  Google Scholar 

  81. A. Pandey, B.S. Yadav, D.V.S. Rao, D. Kaur, A.K. Kapoor, Dislocation density investigation on MOCVD-grown GaN epitaxial layers using wet and dry defect selective etching. Appl. Phys. A 122, 614 (2016). https://doi.org/10.1007/s00339-016-0143-3

    Article  CAS  Google Scholar 

  82. G.N. Sharma, S. Dutta, A. Pandey, S.K. Singh, R. Chatterjee, Influence of nickel doping on structural, morphological and mechanical properties of BiFeO3 thin films. Mater. Chem. Phys. 216, 47–50 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.073

    Article  CAS  Google Scholar 

  83. G.N. Sharma, S. Dutta, A. Pandey, S.K. Singh, R. Chatterjee, Microstructure and improved electrical properties of Ti-substituted BiFeO3 thin films. Mater. Res. Bull. 95, 223–228 (2017). https://doi.org/10.1016/j.materresbull.2017.07.046

    Article  CAS  Google Scholar 

  84. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009). https://doi.org/10.1002/adma.200802849

    Article  CAS  Google Scholar 

  85. N.A. Spaldin, S.W. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63, 38 (2010). https://doi.org/10.1557/mrs.2017.86

    Article  Google Scholar 

  86. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U.U. De-Gomes, M. Maaza, Synthesis and characterization studies of NiO nano-rods for enhancing solar cell efficiency using photon up conversion materials. Ceram. Int. 42, 8385–8394 (2016). https://doi.org/10.1016/j.ceramint.2016.02.054

    Article  CAS  Google Scholar 

  87. S. Debnath, P. Predecki, R. Suryanarayanan, Use of glancing angle X-ray powder diffractometry to depth-profile phase transformations during dissolution of in-domethacin and theophylline tablets. Pharm. Res. 21(1), 149–159 (2004). https://doi.org/10.1023/B:PHAM.0000012163.89163.f8

    Article  CAS  Google Scholar 

  88. M. Nauer, K. Ernst, W. Kautek, M. Neumann-Spallart, Depth profile characterization of electrodeposited multi-thin-film structures by low angle of incidence X-ray diffractometry. Thin Solid Films 489, 86–93 (2005). https://doi.org/10.1016/j.tsf.2005.05.008

    Article  CAS  Google Scholar 

  89. M. Bouroushian, T. Kosanovic, Characterization of thin films by low incidence X-ray diffraction. Cryst. Struct. Theory Appl. 01, 35–39 (2012). https://doi.org/10.4236/csta.2012.13007

    Article  CAS  Google Scholar 

  90. C. Kumari, A. Pandey, A. Dixit, Zn interstitial defects and their contribution as efficient light blue emitters in Zn rich ZnO thin films. J. Alloy Compd. 735, 2318–2323 (2018). https://doi.org/10.1016/j.jallcom.2017.11.377

    Article  CAS  Google Scholar 

  91. M. Agrawal, A. Jain, D.V. SridharaRao, A. Pandey, A. Goyal, A. Kumar, S. Lamba, B.R. Mehta, K. Muraleedharan, R. Muralidharan, Nanoharvesting of GaN nanowires on Si (211) substrates by plasma-assisted molecular beam epitaxy. J. Cryst. Growth. 402, 37–41 (2014). https://doi.org/10.1016/j.jcrysgro.2014.05.004

    Article  CAS  Google Scholar 

  92. S.K. Jangir, H.K. Malik, S. Dalal, A. Pandey, T. Srinivasan, K. Muraleedharan, R. Muralidharan, P. Mishra, X-ray pole figure analysis of catalyst free InAs nanowires on Si substrate. Mater. Sci. Eng. B 225, 108–114 (2017). https://doi.org/10.1016/j.mseb.2017.08.017

    Article  CAS  Google Scholar 

  93. J. IlHong, J. Bae, Z.L. Wang, R.L. Snyder, Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays. Nanotechnology. 20, 085609 (2009). https://doi.org/10.1088/0957-4484/20/8/085609

    Article  CAS  Google Scholar 

  94. S.K. Jain, R.R. Kumar, N. Aggarwal, P. Vashishtha, L. Goswami, S. Kuriakose, A. Pandey, M. Bhaskaran, S. Walia, G. Gupta, Current transport and band alignment study of MoS2/GaN and MoS2/AlGaN heterointerfaces for broadband photodetection application. ACS Appl. Electron. Mater. 2, 710–718 (2020). https://doi.org/10.1021/acsaelm.9b00793

    Article  CAS  Google Scholar 

  95. A. Pandey, S. Dutta, A. Kumar, R. Raman, A.K. Kapoor, R. Muralidhran, Structural and optical properties of bulk MoS2 for 2D layer growth. Adv. Mater. Lett. 7, 777–782 (2016). https://doi.org/10.5185/amlett.2016.6364

    Article  CAS  Google Scholar 

  96. Y. Huang, G. Pandraud, P.M. Sarro, Characterization of low temperature deposited atomic layer deposition TiO2 for MEMS applications. J. Vac. Sci. Technol. A. 31, 01A148 (2013). https://doi.org/10.1116/1.4772664

    Article  CAS  Google Scholar 

  97. B. Wang, J. Yan, H. Cui, S. Du, Preparation and characterization of nano TiO2/micron Cr2O3 composite particles, J. Alloys Compd. 509, 5017–5019 (2011). https://doi.org/10.1016/j.jallcom.2011.02.008

    Article  CAS  Google Scholar 

  98. T. Jantson, T. Avarmaa, H. Mandar, T. Uustare, R. Jaaniso, Nanocrystalline Cr2O3–TiO2 thin films by pulsed laser deposition. Sens. Actuators B 109, 24–31 (2005). https://doi.org/10.1016/j.snb.2005.03.014

    Article  CAS  Google Scholar 

  99. S. Dutta, A. Pandey, Leeladhar, K.K. Jain, Growth and characterization of ultrathin TiO2–Cr2O3 nano-composite films. J. Alloy Compd. 696, 376–381 (2017). https://doi.org/10.1016/j.jallcom.2016.11.284

    Article  CAS  Google Scholar 

  100. B. Mehdikhani, G.H. Borhani, S.R. Bakhshi, H.R. Baharvandi, Synthesis of tantalum carbide/boride nanocomposite powders by mechanochemical method. Int. J. Eng. Trans. B Appl. 27, 769–774 (2014). https://doi.org/10.5829/idosi.ije.2014.27.05b.13

    Article  CAS  Google Scholar 

  101. N. Khemiri, D. Abdelkader, B. Khalfallah, M. Kanzari, Synthesis and characterization of CuIn2n+1S3n+2 (with n = 0, 1, 2, 3 and 5) powders. J. Synth. Theory Appl. 02, 33–37 (2013). https://doi.org/10.4236/ojsta.2013.21003

    Article  CAS  Google Scholar 

  102. J. Wieben, C. Beckmann, H. Yacoub, A. Vescan, H. Kalisch, Development of a III-nitride electro-optical modulator for UV–Vis. Jpn. J. Appl. Phys. 58, 7–12 (2019). https://doi.org/10.7567/1347-4065/ab079e

    Article  CAS  Google Scholar 

  103. J. Shan, S.L. Dexheimer, Time-resolved terahertz studies of conductivity processes in novel electronic materials. Terahertz Spectrosc. Princ. Appl. (2017). https://doi.org/10.1201/9781420007701

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Seema Vinayak, Director, SSPL, for her continuous support and for the permission to publish this review article. Help from other colleagues of SSPL are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Dalal, S., Dutta, S. et al. Structural characterization of polycrystalline thin films by X-ray diffraction techniques. J Mater Sci: Mater Electron 32, 1341–1368 (2021). https://doi.org/10.1007/s10854-020-04998-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04998-w

Navigation