Skip to main content

Advertisement

Log in

Design of high energy-storage properties in eco-friendly AgNbO3-based ceramics via two-step sintering method and tuning phase boundary

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ceramic samples AgNb0.85Ta0.15O3 (ANTO15) and Ag0.85Bi0.05NbO3 (ABNO5) were obtained by two-step sintering method. Dielectric spectra revealed that the M1–M2 and M2–M3 phase boundaries were adjusted to room temperature for ANTO15 and ABNO5, respectively. The ABNO5 sample exhibits pure perovskite phase structure with small grain size, dense, and uniform microstructure. Most importantly, superior comprehensive energy-storage performances of a large recoverable energy-storage density value ~ 3.53 J/cm3, high energy-storage efficiency ~ 86%, high power density ~ 73.57 MW/cm3, as well as good energy-storage stabilities were obtained in the ABNO5 ceramic. Our results indicate that the combinative utilization of tuning phase boundary and two-step sintering method gives a feasible method to prepare high energy-storage properties AgNbO3-based eco-friendly ceramic capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yang LT, Kong X, Li F, Hao H, Cheng ZX, Liu HX, Li JF, Zhang SJ (2019) Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 102:72–108

    Article  CAS  Google Scholar 

  2. Li TY, Jiang XW, Li J, Xie AW, Fu J, Zuo RZ (2022) Ultrahigh energy-storage performances in lead-free Na0.5Bi0.5TiO3-based relaxor antiferroelectric ceramics through synergistic design strategy. ACS Appl Mater Interfaces 14:22263–22269

    Article  CAS  Google Scholar 

  3. Li TY, Qiao ZL, Zuo RZ (2022) X9R-type Ag1-3xBixNbO3 based lead-free dielectric ceramic capacitors with excellent energy-storage properties. Ceram Int 48:2533–2537

    Article  CAS  Google Scholar 

  4. Han K, Luo NN, Jing Y, Wang XP, Peng BL, Liu LJ, Hu CZ, Zhou HF, Wei YZ, Chen XY, Feng Q (2019) Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics. Ceram Int 45:5559–5565

    Article  CAS  Google Scholar 

  5. Liu Z, Lu T, Ye JM, Wang GS, Dong XL, Withers R, Liu Y (2018) Antiferroelectrics for energy storage applications: a Review. Adv Mater Technol 3:1800111

    Article  Google Scholar 

  6. Hao XH, Zhai JW, Kong LB, Xu ZK (2014) A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater Sci 63:1–57

    Article  CAS  Google Scholar 

  7. Zhao L, Liu Q, Zhang SJ, Li JF (2016) Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J Mater Chem C 4:8380–8384

    Article  CAS  Google Scholar 

  8. Ren PR, Ren D, Sun L, Yan FX, Yang S, Zhao GY (2020) Grain size tailoring and enhanced energy storage properties of two-step sintered Nd3+-doped AgNbO3. J Eur Ceram Soc 40:4495–4502

    Article  CAS  Google Scholar 

  9. Li TY, Cao WJ, Chen PF, Wang JS, Wang CC (2021) Effects of sintering method on the structural, dielectric and energy storage properties of AgNbO3 lead-free antiferroelectric ceramics. J Mat Sci 56:13499–13508. https://doi.org/10.1007/s10853-021-06148-x

    Article  CAS  Google Scholar 

  10. Zhao L, Liu Q, Gao J, Zhang SJ, Zhang JF (2017) Lead-free antiferroelectric Sliver Niobate Tantalate with high energy storage performance. Adv Mater 29:1701824

    Article  Google Scholar 

  11. Tian Y, Jin L, Zhang HF, Xu Z, Wei XY, Viola G, Abrahams I, Yan HX (2017) Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J Mater Chem A 5:17525–17531

    Article  CAS  Google Scholar 

  12. Luo NN, Han K, Cabral MJ, Liao XZ, Zhang SJ, Liao CZ, Zhang GZ, Chen XY, Feng Q, Li JF, Wei YZ (2020) Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat Commun 11:4824

    Article  CAS  Google Scholar 

  13. Luo NN, Han K, Liu LJ, Peng BL, Wang XP, Hu CZ, Zhou HF, Feng Q, Chen XY, Wei YZ (2019) Lead-free Ag1-3xLaxNbO3 antiferroelectric ceramics with high energy storage density and efficiency. J Am Ceram Soc 102:4640–4647

    Article  CAS  Google Scholar 

  14. Li L, Wang RX, Zhang ST (2020) Thermally stable energy storage properties in relaxor BNT-6BT-modified antiferroelectric PNZST ceramics. J Am Ceram Soc 103:5769–5777

    Article  CAS  Google Scholar 

  15. Liu P, Zhang YJ, Zhu YW, Fan BY, Li WR, Zhang HB, Jiang SL (2019) Structure variation and energy storage properties of acceptor-modified PBLZST antiferroelectric ceramics. J Am Ceram Soc 102:1912–1920

    CAS  Google Scholar 

  16. Qiao PX, Zhang YF, Chen XF, Zhou MX, Yan SG, Dong XL, Wang GS (2019) Enhanced energy storage properties and stability in (Pb0.895La0.07)(ZrxTi1-x)O3 antiferroelectric ceramics. Ceram Int 45:15898–15905

    Article  CAS  Google Scholar 

  17. Yu YX, Zhang YY, Zou KL, Chen G, Zhang Y, Li H, Lu YM, Zhang QF, He YB (2019) High energy density and efficiency in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics with high La3+ content and optimized Sn4+ content. Ceram Int 45:24419–24424

    Article  CAS  Google Scholar 

  18. Xu YH, Guo Y, Liu Q, Wang GD, Bai JL, Tian JJ, Lin L, Tian Y (2020) High energy storage properties of lead-free Mn-doped (1–x)AgNbO3-xBi0.5Na0.5TiO3 antiferroelectric ceramics. J Eur Ceram Soc 40:56–62

    Article  CAS  Google Scholar 

  19. Li TY, Chen PF, Si RJ, Li F, Guo YM, Wang CC (2020) High energy storage density and efficiency with excellent temperature and frequency stabilities under low operating field achieved in Ag0.91Sm0.03NbO3-modified Na0.5Bi0.5TiO3-BaTiO3 ceramics. J Mater Sci: Mater Electron 31:16928–16937. https://doi.org/10.1007/s10854-020-04249-y

    Article  CAS  Google Scholar 

  20. Li TY, Chen PF, Li F, Wang CC (2021) Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem Eng J 406:127151

    Article  CAS  Google Scholar 

  21. Fan PY, Zhang ST, Xu JW, Zang JD, Samart C, Zhang T, Tan H, Salamon D, Zhang HB, Liu G (2020) Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics. J Mater Chem C 8:5681–5691

    Article  CAS  Google Scholar 

  22. Ji SS, Li QJ, Wang DD, Zhu JY, Zeng M, Hou ZP, Fan Z, Gao XS, Lu XB, Li QL, Liu JM (2021) Enhanced energy storage performance and thermal stability in relaxor ferroelectric (1–x)BiFeO3-x(0.85Ba(Sn0.5Zn0.5)O3) ceramics. J Am Ceram Soc 104:2646–2654

    Article  CAS  Google Scholar 

  23. Chen ZT, Bu XY, Ruan BX, Du J, Zheng P, Li LL, Wen F, Bai WF, Wu W, Zheng L, Zhang Y (2020) Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics. J Eur Ceram Soc 40:5450–5457

    Article  CAS  Google Scholar 

  24. Sun HN, Wang XJ, Sun QZ, Zhang XX, Ma Z, Guo MY, Sun BW, Zhu XP, Liu QD, Lou XJ (2020) Large energy storage density in BiFeO3-BaTiO3-AgNbO3 lead-free relaxor ceramics. J Eur Ceram Soc 40:2929–2935

    Article  CAS  Google Scholar 

  25. Gao XL, Li Y, Chen JW, Yuan C, Zeng M, Zhang AH, Gao XS, Lu XB, Lia QL, Liu JM (2019) High energy storage performances of Bi1-xSmxFe0.95Sc0.05O3 lead-free ceramics synthesized by rapid hot press sintering. J Eur Ceram Soc 39:2331–2338

    Article  CAS  Google Scholar 

  26. Chen PF, Li TY, Cao WJ, Cheng C, Wang CC (2021) Simultaneously achieved high energy-storage and superior charge-discharge performance in K0.5Bi0.5TiO3-based lead-free ceramics by A-site defect engineering. J Mater Sci: Mater in Elec 32:12121–12133. https://doi.org/10.1007/s10854-021-05840-7

    Article  CAS  Google Scholar 

  27. Zhao P, Tang B, Fang ZX, Si F, Yang CT, Zhang SR (2021) Improved dielectric breakdown strength and energy storage properties in Er2O3 modified Sr0.35Bi0.35K0.25TiO3. Chem Eng J 403:126290

    Article  CAS  Google Scholar 

  28. Li F, Hou X, Li TY, Si RJ, Wang CC, Zhai JW (2019) Fine-grain induced outstanding energy storage performance in novel Bi0.5K0.5TiO3-Ba(Mg1/3Nb2/3)O3 ceramics via a hot-pressing strategy. J Mater Chem C 7:12127–12138

    Article  CAS  Google Scholar 

  29. Li F, Si RJ, Li TY, Wang CC (2020) High energy storage performance and fast discharge speed in dense 0.7Bi0.5K0.5TiO3-0.3SrTiO3 ceramics via a novel rolling technology. Ceram Int 46:6995–6998

    Article  CAS  Google Scholar 

  30. Zhou MX, Liang RH, Zhou ZY, Dong XL (2019) Achieving ultrahigh energy storage density and energy efficiency simultaneously in sodium niobate-based lead-free dielectric capacitors via microstructure modulation. Inorg Chem Front 6:2148–2157

    Article  CAS  Google Scholar 

  31. Shi JP, Chen XL, Sun CC, Pang FH, Chen HY, Dong XY, Zhou XJ, Wang KG, Zhou HF (2020) Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics. Ceram Int 46:25731–25737

    Article  CAS  Google Scholar 

  32. Zhou MX, Liang RH, Zhou ZY, Yan SG, Dong XL (2018) Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability, ACS Sustain. Chem Eng 6:12755–12765

    CAS  Google Scholar 

  33. Yang ZT, Du HL, Jin L, Hu QY, Wang H, Li YF, Wang JF, Gao F, Qu SB (2019) Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched temperature range. J Mater Chem A 7:27256–27266

    Article  CAS  Google Scholar 

  34. Li YD, Zhen YH, Wang WX, Fang ZQ, Jia ZL, Zhang JY, Zhong H, Wu JG, Yan YG, Xue QZ, Zhu FY (2020) Enhanced energy storage density and discharge efficiency in potassium sodium niobite-based ceramics prepared using a new scheme. J Eur Ceram Soc 40:2357–2365

    Article  CAS  Google Scholar 

  35. Qu BY, Du HL, Yang ZT, Liu QH, Liu TH (2016) Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering. RSC Adv 6:34381–34389

    Article  CAS  Google Scholar 

  36. Yang ZT, Du HL, Qu SB, Hou YD, Ma H, Wang JF, Wang J, Wei XY, Xu Z (2016) Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J Mater Chem A 4:13778–13785

    Article  CAS  Google Scholar 

  37. Li F, Hou X, Wang J, Zeng HR, Shen B, Zhai JW (2019) Structure-design strategy of 0–3 type (Bi0.32Sr0.42Na0.2)TiO3/MgO composite to boost energy storage density, efficiency and charge-discharge performance. J Eur Ceram Soc 39:2889–2898

    Article  CAS  Google Scholar 

  38. Shi F, Tang B, Fang ZX, Li H, Zhang SR (2019) Enhanced energy storage and fast charge-discharge properties of (1–x)BaTiO3-xBi(Ni1/2Sn1/2)O3 relaxor ferroelectric ceramics. Ceram Int 45:17580–17590

    Article  Google Scholar 

  39. Yuan QB, Li G, Yao FZ, Cheng SD, Wang YF, Ma R, Mi SB, Gu M, Wang K, Li JF, Wang H (2018) Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 52:203–210

    Article  CAS  Google Scholar 

  40. Li D, Lin Y, Liu XY, Yang HB, Wang T (2019) Influence of SnO2 additive on the energy storage properties of Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3 relaxor ferroelectrics. Ceram Int 45:22625–22631

    Article  CAS  Google Scholar 

  41. Huang YL, Zhao CL, Wu B, Wu JG (2020) Multifunctional BaTiO3-based relaxor ferroelectric toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS Appl Mater & Inter 12:23885–23895

    Article  CAS  Google Scholar 

  42. Wang J, Li TY, Jiang XW, Zhou C, Xu YJ, Shi RJ, Liu LQ, Chu BJ, Zhao Z, Zuo RZ (2022) An alternative way to design excellent energy-storage properties in Na0.5Bi0.5TiO3-based lead-free system by constructing relaxor dielectric composites. J Eur Ceram Soc 42:6512–6517

    Article  CAS  Google Scholar 

  43. Cao WJ, Li TY, Chen PF, Wang CC (2021) Outstanding energy-storage performances in Na0.5Bi0.5TiO3-BaTiO3-(Sr0.85Bi0.1)(Mg1/3Nb2/3)O3 lead-free ceramics. ACS Appl Energ Mater 4:9362–9367

    Article  CAS  Google Scholar 

  44. Xu SD, Hao R, Yan Z, Hou ST, Peng ZH, Wu D, Liang PF, Chao XL, Wei LL, Yang ZP (2022) Enhanced energy storage properties and superior thermal stability in SNN-based tungsten bronze ceramics through substitution strategy. J Eur Ceram Soc 42:2781–2788

    Article  CAS  Google Scholar 

  45. Wu LL, Zhang JJ, Du HW, Chen JF, Yu HN, Liu YP, Wang JY, Zhou Y, Yao YX, Zhai JW (2022) Chemical nature of the enhanced energy storage in A-site defect engineered Bi0.5Na0.5TiO3-based relaxor ferroelectrics. J Alloys Compd 905:164183

    Article  CAS  Google Scholar 

  46. Hu D, Pan ZB, Tan XY, Yang F, Ding J, Zhang X, Li P, Liu JJ, Zhai JW, Pan H (2021) Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications. Chem Eng J 409:127375

    Article  CAS  Google Scholar 

  47. Yang HB, Tian JH, Lin Y, Ma JQ (2021) Realizing ultra-high energy storage density of lead-free 0.76Bi0.5Na0.5TiO3–0.24SrTiO3-Bi(Ni2/3Nb1/3)O3 ceramics under low electric fields. Chem Eng J 418:129337

    Article  CAS  Google Scholar 

  48. Zhou SY, Pu YP, Zhang XQ, Shi Y, Gao ZY, Feng Y, Shen GD, Wang XY, Wang DW (2022) High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. Chem Eng J 427:131684

    Article  CAS  Google Scholar 

  49. Shi P, Wang XJ, Lou XJ, Zhou C, Liu QD, He LQ, Yang S, Zhang XX (2021) Significantly enhanced energy storage properties of Nd3+ doped AgNbO3 lead-free antiferroelectric ceramics. J Alloys Compd 877:160162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51872001), Scientific Research Starting Foundation of Anhui Polytechnic University of China (2021YQQ031), the Natural Science Foundation of Anhui Polytechnic University (Grant No. Xjky2022029), and the Open Research Fund Program of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University (Grant No. FDMI202105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyu Li or Chunchang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 680 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Li, T., Liang, C. et al. Design of high energy-storage properties in eco-friendly AgNbO3-based ceramics via two-step sintering method and tuning phase boundary. J Mater Sci 57, 21000–21008 (2022). https://doi.org/10.1007/s10853-022-07964-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07964-5

Navigation