Skip to main content
Log in

Microstructure and mechanical properties of wire and arc additive manufactured thin wall with low-temperature transformation

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-temperature transformation (LTT) welding wire was initially developed to mitigate residual stress in the weld. It could also be used for internal stress optimization in Wire and Arc Additive Manufacturing (WAAM) process. In this study, a 26 layers LTT wall sample fabricated by using the WAAM technique was investigated. The microstructure of the LTT deposited wall includes elongated cellular martensite and reticular residual austenite. With the accumulation of deposition height, the prior austenite grain size increases, and the volume fraction of residual austenite and the density of dislocations in martensite decreases. According to the model of martensite transformation kinetics, the original austenite grain size is the main reason that affects the austenite fraction. In addition, the presence of a thermal cycle leads to the refinement of the martensitic microstructure and the increase in the boundary density, as well as the elimination of the sub-stable austenitic phase resulting in higher tensile properties in the middle samples than in the top ones. From the current work, it is clear that the unique thermal cycle treatment of WAAM is beneficial in improving the performance of LTT materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Lin Z, Liu P, Yu X (2021) A literature review on the wire and arc additive manufacturing-welding systems and software. Sci Adv Mater 13(8):1391–1400. https://doi.org/10.1166/sam.2021.3971

    Article  CAS  Google Scholar 

  2. Lin Z (2019) Wire and arc additive manufacturing of thin structures using metal-cored wire consumables: microstructure, mechanical properties, and experiment-based thermal model. http://resolver.tudelft.nl/uuid:ed3515f3-b43a-4cdc-9f11-2e249c97bbed

  3. Bermingham M, Thomson-Larkins J, St John D, Dargusch M (2018) Sensitivity of Ti-6Al-4V components to oxidation during out of chamber wire+ arc additive manufacturing. J Mater Process Technol 258:29–37. https://doi.org/10.1016/j.jmatprotec.2018.03.014

    Article  CAS  Google Scholar 

  4. Ding J, Colegrove P, Martina F, Williams S, Wiktorowicz R, Palt M (2015) Development of a laminar flow local shielding device for wire+ arc additive manufacture. J Mater Process Technol 226:99–105. https://doi.org/10.1016/j.jmatprotec.2015.07.005

    Article  CAS  Google Scholar 

  5. Li C, Liu Z, Fang X, Guo Y (2018) Residual stress in metal additive manufacturing. Procedia CIRP 71:348–353. https://doi.org/10.1016/j.procir.2018.05.039

    Article  Google Scholar 

  6. Martina F, Roy M, Szost B et al (2016) Residual stress of as-deposited and rolled wire+ arc additive manufacturing Ti–6Al–4V components. Mater Sci Technol 32(14):1439–1448. https://doi.org/10.1080/02670836.2016.1142704

    Article  CAS  Google Scholar 

  7. Li R, Xiong J, Lei Y (2019) Investigation on thermal stress evolution induced by wire and arc additive manufacturing for circular thin-walled parts. J Manuf Process 40:59–67. https://doi.org/10.1016/j.jmapro.2019.03.006

    Article  Google Scholar 

  8. Wu Q, Mukherjee T, De A, DebRoy T (2020) Residual stresses in wire-arc additive manufacturing-Hierarchy of influential variables. Addit Manuf 35:101355. https://doi.org/10.1016/j.addma.2020.101355

    Article  Google Scholar 

  9. Xiong J, Lei Y, Li R (2017) Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures. Appl Therm Eng 126:43–52. https://doi.org/10.1016/j.applthermaleng.2017.07.168

    Article  Google Scholar 

  10. Gudur S, Nagallapati V, Pawar S, Muvvala G, Simhambhatla S (2021) A study on the effect of substrate heating and cooling on bead geometry in wire arc additive manufacturing and its correlation with cooling rate. Mater Today Proc 41:431–436. https://doi.org/10.1016/j.matpr.2020.10.071

    Article  CAS  Google Scholar 

  11. Hönnige J, Colegrove PA, Ganguly S, Eimer E, Kabra S, Williams S (2018) Control of residual stress and distortion in aluminium wire+ arc additive manufacture with rolling. Addit Manuf 22:775–783. https://doi.org/10.1016/j.addma.2018.06.015

    Article  CAS  Google Scholar 

  12. Gou J, Wang Z, Hu S et al (2020) Effects of ultrasonic peening treatment in three directions on grain refinement and anisotropy of cold metal transfer additive manufactured Ti–6Al–4V thin wall structure. J Manuf Process 54:148–157. https://doi.org/10.1016/j.jmapro.2020.03.010

    Article  Google Scholar 

  13. Yang Y, Jin X, Liu C et al (2018) Residual stress, mechanical properties, and grain morphology of Ti–6Al–4V alloy produced by ultrasonic impact treatment assisted wire and arc additive manufacturing. Metals 8(11):934. https://doi.org/10.3390/met8110934

    Article  CAS  Google Scholar 

  14. Sun L, Guo C, Huang L, Jiang F, Xu K, Huang R (2022) Effect and mechanism of inter-layer ultrasonic impact strengthening on the anisotropy of low carbon steel components fabricated by wire and arc additive manufacturing. Mater Sci Eng A 848:143382. https://doi.org/10.1016/j.msea.2022.143382

    Article  CAS  Google Scholar 

  15. Li K, Klecka MA, Chen S, Xiong W (2021) Wire-arc additive manufacturing and post-heat treatment optimization on microstructure and mechanical properties of Grade 91 steel. Addit Manuf 37:101734. https://doi.org/10.1016/j.addma.2020.101734

    Article  CAS  Google Scholar 

  16. Shen H, Lin J, Zhou Z, Liu BJJOMP (2022) Effect of induction heat treatment on residual stress distribution of components fabricated by wire arc additive manufacturing. J Manuf Process 75:331–345. https://doi.org/10.1016/j.jmapro.2022.01.018

    Article  Google Scholar 

  17. Altenkirch J, Gibmeier J, Kromm A, Kannengiesser T, Nitschke-Pagel T, Hofmann M (2011) In situ study of structural integrity of low transformation temperature (LTT)-welds. Mater Sci Eng A 528(16–17):5566–5575. https://doi.org/10.1016/j.msea.2011.03.091

    Article  CAS  Google Scholar 

  18. Feng Z, Di X, Wu S, Zhang Z, Liu X, Wang D (2018) Comparison of two types of low-transformation-temperature weld metals based on solidification mode. Sci Technol Weld Join 23(3):241–248. https://doi.org/10.1080/13621718.2017.1376792

    Article  CAS  Google Scholar 

  19. Kromm A, Dixneit J, Kannengiesser T (2014) Residual stress engineering by low transformation temperature alloys—state of the art and recent developments. Weld World 58:729–741. https://doi.org/10.1007/s40194-014-0155-6

    Article  CAS  Google Scholar 

  20. Rodrigues TA, Duarte V, Avila JA, Santos TG, Miranda R, Oliveira J (2019) Wire and arc additive manufacturing of HSLA steel: effect of thermal cycles on microstructure and mechanical properties. Addit Manuf 27:440–450. https://doi.org/10.1016/j.addma.2019.03.029

    Article  CAS  Google Scholar 

  21. Zhang Y, Chen Y, Li P, Male AT (2003) Weld deposition-based rapid prototyping: a preliminary study. J Mater Process Technol 135(2–3):347–357. https://doi.org/10.1016/S0924-0136(02)00867-1

    Article  Google Scholar 

  22. Nogi K, Ogino K, McLean A, Miller W (1986) The temperature coefficient of the surface tension of pure liquid metals. Metall Trans B 17:163–170. https://doi.org/10.1007/BF02670829

    Article  Google Scholar 

  23. Geng H, Li J, Xiong J, Lin X, Huang D, Zhang F (2018) Formation and improvement of surface waviness for additive manufacturing 5A06 aluminium alloy component with GTAW system. Rapid Prototyp J 24(2):342–350. https://doi.org/10.1108/RPJ-04-2016-0064

    Article  Google Scholar 

  24. Schaeffler AL (1949) Constitution diagram for stainless steel weld metal. Metal Progress 56(11):680

    CAS  Google Scholar 

  25. Lervåg M, Sørensen C, Robertstad A et al (2020) Additive manufacturing with superduplex stainless steel wire by cmt process. Metals 10(2):272. https://doi.org/10.3390/met10020272

    Article  CAS  Google Scholar 

  26. Kromm A, Kannengiesser T, Altenkirch J, Gibmeier (2011) Residual stresses in multilayer welds with different martensitic transformation temperatures analyzed by high-energy synchrotron diffraction. Mater Sci Forum, Trans Tech Publ 681: 37–42. https://doi.org/10.4028/www.scientific.net/MSF.681.37

  27. Shankar V, Gill T, Mannan S, Sundaresan S (2003) Solidification cracking in austenitic stainless steel welds. Sadhana 28:359–382. https://doi.org/10.1007/BF02706438

    Article  CAS  Google Scholar 

  28. David S, Vitek J (1989) Correlation between solidification parameters and weld microstructures. Int Mater Rev 34(1):213–245. https://doi.org/10.1179/imr.1989.34.1.213

    Article  CAS  Google Scholar 

  29. Akhtar M, Khajuria A, Sahu JK et al (2018) Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl Nanosci 8:1669–1685. https://doi.org/10.1007/s13204-018-0854-1

    Article  CAS  Google Scholar 

  30. Chae H, Huang E-W, Woo W et al (2021) Unravelling thermal history during additive manufacturing of martensitic stainless steel. J Alloys Compd 857:157555. https://doi.org/10.1016/j.jallcom.2020.157555

    Article  CAS  Google Scholar 

  31. Ge J, Lin J, Fu H, Lei Y, Xiao R (2018) A spatial periodicity of microstructural evolution and anti-indentation properties of wire-arc additive manufacturing 2Cr13 thin-wall part. Mater Des 160:218–228. https://doi.org/10.1016/j.matdes.2018.09.021

    Article  CAS  Google Scholar 

  32. Khajuria A, Kumar R, Bedi R (2019) Effect of boron addition on creep strain during impression creep of P91 steel. J Mater Eng Perform 28:4128–4142. https://doi.org/10.1007/s11665-019-04167-z

    Article  CAS  Google Scholar 

  33. Nakada N, Tsuchiyama T, Takaki S, Ponge D, Raabe D (2013) Transition from diffusive to displacive austenite reversion in low-alloy steel. ISIJ Int 53(12):2275–2277. https://doi.org/10.2355/isijinternational.53.2275

    Article  CAS  Google Scholar 

  34. Dong B, Cai X, Xia Y, Lin S, Fan C, Chen F (2021) Effects of interlayer temperature on the microstructures of wire arc additive manufactured Al–Zn–Mg–Cu alloy: insights into texture responses and dynamic precipitation behaviors. Addit Manuf 48:102453. https://doi.org/10.1016/j.addma.2021.102453

    Article  CAS  Google Scholar 

  35. Khajuria A, Akhtar M, Bedi R (2022) Boron addition to AISI A213/P91 steel: preliminary investigation on microstructural evolution and microhardness at simulated heat-affected zone. Mater Werkst 53(10):1167–1183. https://doi.org/10.1002/mawe.202100152

    Article  CAS  Google Scholar 

  36. Brandl D, Lukas M, Stockinger M, Ploberger S, Ressel G (2019) Evidence of austenite memory in PH 15–5 and assessment of its formation mechanism. Mater Des 176:107841. https://doi.org/10.1016/j.matdes.2019.107841

    Article  CAS  Google Scholar 

  37. Kajiwara S (1999) Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng A 273:67–88. https://doi.org/10.1016/S0921-5093(99)00290-7

    Article  Google Scholar 

  38. Kundu A, Field DP (2016) Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel. Mater Sci Eng A 667:435–443. https://doi.org/10.1016/j.msea.2016.05.022

    Article  CAS  Google Scholar 

  39. Hidalgo J, Santofimia MJ (2016) Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of as-quenched lath martensite. Metall Mater Trans A 47:5288–5301. https://doi.org/10.1007/s11661-016-3525-4

    Article  CAS  Google Scholar 

  40. Christien F, Telling M, Knight K (2013) Neutron diffraction in situ monitoring of the dislocation density during martensitic transformation in a stainless steel. Scr Mater 68(7):506–509. https://doi.org/10.1016/j.scriptamat.2012.11.031

    Article  CAS  Google Scholar 

  41. Khajuria A, Bedi R, Kumar R (2019) Investigation of impression creep deformation behavior of boron-modified P91 steel by high-end characterization techniques. Manufacturing engineering, lecture notes on multidisciplinary industrial engineering. Singapore: Springer, pp 137–150. https://doi.org/10.1007/978-981-13-6287-3_10

  42. Hirth JP (1972) The influence of grain boundaries on mechanical properties. Metall Trans 3(12):3047–3067. https://doi.org/10.1007/BF02661312

    Article  CAS  Google Scholar 

  43. Shirazi H, Miyamoto G, Nedjad SH, Chiba T, Ahmadabadi MN, Furuhara T (2018) Microstructure evolution during austenite reversion in Fe-Ni martensitic alloys. Acta Mater 144:269–280. https://doi.org/10.1016/j.actamat.2017.10.068

    Article  CAS  Google Scholar 

  44. Yu X, Babu SS, Lippold JC, Terasaki H, Komizo Y-i (2012) In-situ observations of martensitic transformation in blast-resistant steel. Metall Mater Trans A 43:1538–1546. https://doi.org/10.1007/s11661-011-0746-4

    Article  CAS  Google Scholar 

  45. Prawoto Y, Jasmawati N, Sumeru K (2012) Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel. J Mater Sci Technol 28(5):461–466. https://doi.org/10.1016/S1005-0302(12)60083-8

    Article  CAS  Google Scholar 

  46. Brofman PJ, Ansell GSJMTA (1983) On the effect of fine grain size on the Ms temperature in Fe-27Ni-0.025C alloys. Metall Trans A 14:1929–1931. https://doi.org/10.1007/BF02645565

    Article  Google Scholar 

  47. Song K, Lin Z, Fa Y et al (2023) Microstructure and mechanical properties of high-strength, low-alloy steel thin-wall fabricated with wire and arc additive manufacturing. Metals 13(4):764. https://doi.org/10.3390/met13040764

    Article  CAS  Google Scholar 

  48. Yang HS, Bhadeshia HJSM (2009) Austenite grain size and the martensite-start temperature. Scr Mater 60(7):493–495. https://doi.org/10.1016/j.scriptamat.2008.11.043

    Article  CAS  Google Scholar 

  49. Gao Q, Wang C, Qu F, Wang Y, Qiao Z (2014) Martensite transformation kinetics in 9Cr-1.7 W-0.4 Mo–Co ferritic steel. J Alloys Compd 610:322–330. https://doi.org/10.1016/j.jallcom.2014.05.060

    Article  CAS  Google Scholar 

  50. Park J-Y, Park Y-S (2007) The effects of heat-treatment parameters on corrosion resistance and phase transformations of 14Cr–3Mo martensitic stainless steel. Mater Sci Eng A 449:1131–1134. https://doi.org/10.1016/j.msea.2006.03.134

    Article  CAS  Google Scholar 

  51. Souza SDSD, Moreira PS, Faria GLD (2020) Austenitizing temperature and cooling rate effects on the martensitic transformation in a microalloyed-steel. Mater Res. https://doi.org/10.1590/1980-5373-MR-2019-0570

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially sponsored by National Science Foundation of China (NSFC No. U2141216) and the Beijing Institute of Technology. The authors gratefully acknowledge financial support from China Scholarship Council (CSC No: 202106030118) and technical support from the Experimental Center of Advanced Materials (ECAM) of the Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

KS: Methodology, Conceptualization, Data analysis, Writing—original draft. ZL: visualization, Investigation, writing—review & editing. ZZ and XZ: writing—review & editing. YL: Investigation. Constantinos Goulas, WY and XY: Supervision, Conceptualization, Writing—review & editing.

Corresponding author

Correspondence to Xinghua Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, K., Lin, Z., Zhu, Z. et al. Microstructure and mechanical properties of wire and arc additive manufactured thin wall with low-temperature transformation. J Mater Sci 58, 13183–13204 (2023). https://doi.org/10.1007/s10853-023-08645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08645-7

Navigation