Skip to main content
Log in

Residual stress engineering by low transformation temperature alloys—state of the art and recent developments

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Residual stress engineering in welding becomes more and more prominent as the use of tailored materials, e.g., high-strength steels, calls for maximum utilization of the material properties. As a consequence, residual stresses have to be considered as design criterion. Moreover, it may be utilized to improve the material’s performance. Low transformation temperature alloys are a smart approach to control the residual stresses already during the welding process avoiding time-consuming postweld treatments. This paper gives an overview about the progress made in research in this topic with special focus on residual stresses. Basics as well as important developments will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kromm A, Kannengiesser T, Gibmeier J, Genzel C, van der Mee V (2009) Determination of residual stresses in low transformation temperature (LTT-) weld metals using X-ray and high energy synchrotron radiation. Weld World 53:3–16

    Article  Google Scholar 

  2. Nakamura T, Hiraoka K, Zenitani S (2008) Improvement of MIG welding stability in pure Ar shielding gas using small amount of oxygen and coaxial hybrid solid wire. Sci Technol Weld Join 13:25–32

    Article  Google Scholar 

  3. Ohta A, Watanabe O, Matsuoka K, Shiga C, Nishijima S, Maeda Y, Suzuki N, Kubo T (1999) Fatigue strength improvement by using newly developed low transformation temperature welding material. Weld World 43:38–42

    Google Scholar 

  4. Martinez Diez F (2008) Development of compressive residual stress in structural steel weld toes by means of weld metal phase transformations. Weld World 52:63–78

    Article  Google Scholar 

  5. Francis JA, Stone HJ, Kundu S, Rogge RB, Bhadeshia HKDH, Withers PJ (2007) Transformation temperatures and welding residual stresses in ferritic steels. Proceedings of PVP2007, ASME Pressure Vessels and Piping Division Conference, San Antonio, July 22–26 2007, USA, PVP2007-26544, ASME, pp 1–8

  6. Wohlfahrt H, Macherauch E (1977) Die Ursachen des Schweißeigenspannungszustandes. Materialprüfung 19:272–280 (In German)

    Google Scholar 

  7. Wohlfahrt H (1986) Die Bedeutung der Austenitumwandlung für die Eigenspannungs-entstehung beim Schweißen. Härterei Technische Mitteilungen 41:248–257 (In German)

    Google Scholar 

  8. Nitschke-Pagel T, Wohlfahrt H (2002) Residual stresses in welded joints—sources and consequences. Mater Sci Forum 404–407:215–226

    Article  Google Scholar 

  9. Jones WKC, Alberry PJ (1977) A model for stress accumulation in steels during welding. In: Residual stresses in welded construction and their effects. International conference, London, 15–17 November 1977, Volume 1—papers. The Welding Institute, Abington, pp 15–26

  10. Satoh K (1972) Thermal stresses developed in high-strength steel subjected to thermal cycles simulating weld heat-affected zone. Trans Japan Weld Soc 3:135–142

    Google Scholar 

  11. Bühler H, Scheil E (1933) Zusammenwirken von Wärme- und Umwandlungsspannungen in abgeschreckten Stählen. Archiv des Eisenhüttenwesens 7:283–288 (in German)

    Google Scholar 

  12. Bhadeshia HKDH (2004) Developments in martensitic and bainitic steels: role of the shape deformation. Mater Sci Eng A 378:34–39

    Article  Google Scholar 

  13. Ohta A, Suzuki N, Maeda Y, Hiraoka K, Nakamura T (1999) Superior fatigue crack growth properties in newly developed weld metal. Int J Fatigue 21:113–118

    Article  Google Scholar 

  14. Ohta A, Suzuki N, Maeda Y (2000) Doubled fatigue strength of box welds by using low transformation temperature welding material. In: Meike A, Gonis A, Turchi P, Rajan K (eds) Properties of complex inorganic solids 2. Kluwer Academic/Plenum, New York, pp 401–408. ISBN 0306464985

  15. Ohta A, Watanabe O, Matsuoka K, Maeda Y, Suzuki N, Kubo T (2000) Fatigue strength improvement of box welds by low transformation temperature welding wire and PWHT. Weld World 44:52–56

    Google Scholar 

  16. Ohta A, Maeda Y, Suzuki N (2001) Fatigue life extension by repairing fatigue cracks initiated around box welds with low transformation temperature welding wire. Weld World 45:3–8

    Google Scholar 

  17. Ohta A, Matsuoka K, Nguyen N, Maeda Y, Suzuki N (2003) Fatigue strength improvement of lap joints of thin steel plate using low transformation-temperature welding wire. Weld J 82:78–83

    Google Scholar 

  18. Ohta A, Suzuki N, Maeda Y, Maddox S (2003) Fatigue strength improvement of lap welded joints by low transformation temperature welding wire—superior improvement with strength of steel. Weld World 47:38–43

    Article  Google Scholar 

  19. Suzuki N, Ohta A, Maeda Y (2004) Repair of fatigue cracks initiated around a box welds using low transformation temperature welding material. Weld Int 18:112–117

    Article  Google Scholar 

  20. Miki C, Anami K (2001) Fatigue strength improvement of welded joints using low temperature transformation welding materials. Festigkeit von Schweissverbindungen; Forschungsberichte des Instituts für Schweisstechnik; Technische Universität Braunschweig, Band 1, Shaker, Aachen, pp 161–173. ISBN 3-8265-8598-4

  21. Miki C, Homma K, Tominaga T (2002) High strength and high performance steels and their use in bridge structures. J Constr Steel Res 58:3–20

    Article  Google Scholar 

  22. Mohri M, Sakano M, Arakawa K, Kubo T, Morikage Y (2004) Fatigue strength improvement on non-load carrying type cruciform welded joint by the low transformation welding wire and effect of compressive over-loading. Weld Res Abroad XLX:32–33

    Google Scholar 

  23. Wang W, Huo L, Zhang Y, Wang D, Jing H (2002) New developed welding electrode for improving the fatigue strength of welded joints. J Mater Sci Technol 18:527–531

    Google Scholar 

  24. Wang W, Huo L, Wang D, Zhang Y, Jing H, Yang X (2003) Improving the fatigue performance of longitudinal welded joints by low transformation temperature electrodes. China Weld 12:34–38

    Google Scholar 

  25. Lixing H, Dongpo W, Wenxian W, Yufeng Z (2004) Ultrasonic peening and low trans-formation temperature electrodes used for improving the fatigue strength of welded joints. Weld World 48:34–39

    Article  Google Scholar 

  26. Eckerlid J, Nilsson T, Karlsson L (2003) Fatigue properties of longitudinal attachments welded using low transformation temperature filler. Sci Technol Weld Join 8:353–359

    Article  Google Scholar 

  27. Barsoum Z, Gustafsson M (2009) Fatigue of high strength steel joints welded with low temperature transformation consumables. Eng Fail Anal 16:2186–2194

    Article  Google Scholar 

  28. Barsoum Z, Gustafsson M (2007) Spectrum fatigue of high strength steel joints welded with low temperature transformation consumables. International Conference on Fatigue Design, November 21–22, 2007, Senlis, France, pp 1–10

  29. Darcis PP, Katsumoto H, Payares-Asprino MC, Liu S, Siewert TA (2007) Cruciform fillet welded joint fatigue strength improvement by weld metal phase transformations. Fatigue Fract Eng Mater Struct 31:125–136

    Article  Google Scholar 

  30. Payares-Asprino MC, Katsumoto H, Liu S (2008) Effect of martensite start and finish temperature on residual stress development in structural steel welds. Weld J 87:279–289

    Google Scholar 

  31. Shiga C (1999) Systematic approach to solution of welding problems in STX21 project: aiming for remarkable advances in welded joints. Sci Technol Weld Join 5:356–364

    Article  Google Scholar 

  32. Zenitani S, Hayakawa N, Yamamoto J, Hiraoka K, Shiga C, Morikage Y, Kubo T, Yasuda K (2003) Prevention of cold cracking in high strength steel welds by applying newly developed low transformation-temperature welding consumables. 6th International Trends in Welding Research Conference Proceedings, 15–19 April 2002, Pine Mountain, USA, ASM International, pp 569–574

  33. Kannengiesser T, Boellinghaus T (2013) Cold cracking tests—an overview of present technologies and applications. Weld World 57:3–37

    Article  Google Scholar 

  34. Hayakawa N, Zenitani S, Yamamoto J, Nakamura T, Hiraoka K, Morikage Y, Kubo T, Yasuda K (2004) Applicability of low transformation-temperature welding consumables to high strength welded joint. Weld Res Abroad XLX:21–27

    Google Scholar 

  35. Zenitani S, Hayakawa N, Yamamoto J, Hiraoka K, Morikage Y, Kubo T, Yasada K, Amano K (2007) Development of new low transformation-temperature welding consumable to prevent cold cracking in high strength steel welds. Sci Technol Weld Join 12:516–522

    Google Scholar 

  36. Kromm A, Kannengiesser T (2011) Characterising phase transformations of different LTT alloys and their effect on residual stresses and cold cracking. Weld World 55:48–56

    Article  Google Scholar 

  37. Martinez F, Liu S, Edwards G (2004) The development of a compressive residual stress around a structural steel weld by means of phase transformation. Proceedings from Joining of Advanced and Speciality Materials, October 18–20, Columbus, Ohio, 2004, pp 42–48

  38. Martinez F, Liu S (2005) Development of compressive residual stress in structural steel weld toes by means of weld metal phase transformations. Proceedings of the 7th International Conference on Trends in Welding Research, May 16–20, Callaway Gardens Resort, Pine Mountain, Georgia, USA pp 583–588

  39. Martinez Diez F (2004) Development of compressive residual stress in structural steel weld toes by means of weld metal phase transformations. Thesis (Ph.D.), Colorado School of Mines

  40. Mikami Y (2010) HENRY GRANJON PRIZE COMPETITION 2011 Winner Category C: “design and structural integrity” numerical analysis of weld distortion considering phase transformation effects. Weld World 54:97–107

    Article  Google Scholar 

  41. Mikami Y, Mochizuki M, Toyoda M (2007) In-process control of weld distortion by using phase transformation effects. In: Cerjak H, Bhadeshia HKDH, Kozeschnik E (eds) Mathematical modelling of weld phenomena 8. Verlag der Technischen Universität Graz, Graz, pp 981–1001. ISBN 978-3-902465-69-6

  42. Mikami Y, Morikage Y, Mochizuki M, Toyoda M (2005) Numerical simulation of welding distortions of T-joints with low-temperature transformation welding wire. 1st International Conference on Distortion Engineering 2005, pp 453–460

  43. Mochizuki M, Toyoda M, Kubo T, Morikage Y (2004) Residual stress reduction by using weld metal with property of low-temperature phase transformation. Residual stress, fracture, and stress corrosion cracking, San Diego, July 25–29 2004, USA, PVP-Vol. 479, PVP2004-2650, ASME, pp 77–83

  44. Yamamoto J, Meguro S, Muramatsu Y, Hayakawa N, Hiraoka K (2009) Analysis of martensite transformation behaviour in welded joints of low transformation-temperature materials. Weld Int 23:411–421

    Article  Google Scholar 

  45. Kromm A (2012) HENRY GRANJON PRIZE COMPETITION 2011 Winner Category B: “materials behaviour and weldability” exploring the interaction of phase transformation and residual stress during welding by synchrotron diffraction. Weld World 56:2–11

    Article  Google Scholar 

  46. Kromm A, Kannengiesser T, Altenkirch J, Gibmeier J (2011) Residual stresses in multilayer welds with different martensitic transformation temperatures analyzed by high-energy synchrotron diffraction. Mater Sci Forum 681:37–42

    Article  Google Scholar 

  47. Kannengiesser T, Rethmeier M, Portella P, Ewert U, Redmer B (2011) Assessment of hot cracking behaviour in welds. Int J Mater Res 8:1001–1006

    Google Scholar 

  48. Kromm A (2011) Umwandlungsverhalten und Eigenspannungen beim Schweißen neuartiger LTT-Zusatzwerkstoffe. Dissertation, BAM-Dissertationsreihe Band 72, Berlin 2011, ISBN: 1613-4249. (In German). http://www.bam.de/de/service/publikationen/publikationen_medien/dissertationen/diss_72_vt.pdf. 10 Apr 2014

  49. Mikami Y, Mochizuki M, Toyoda M, Morikage Y (2006) Measurement and numerical simulation of angular distortion of fillet welded T-joints—welding angular distortion control by transformation expansion of weld metals (report 1). Weld Int 21:547–560

    Google Scholar 

  50. Mikami Y, Morikage Y, Mochizuki M, Toyoda M (2009) Angular distortion of fillet welded T joint using low transformation temperature welding wire. Sci Technol Weld Join 14:97–105

    Article  Google Scholar 

  51. Morikage Y, Kubo T, Yasuda K, Amano K, Mikami Y, Mochizuki M, Toyoda M (2005) Welding-distortion phenomena of T-joint using low-temperature transformation welding wire. 1st International Conference on Distortion Engineering 2005, pp 447–452

  52. Shirzadi AA, Bhadeshia HKDH, Karlsson L, Withers PJ (2009) Stainless steel weld metal designed to mitigate residual stresses. Sci Technol Weld Join 14:559–565

    Article  Google Scholar 

  53. Mochizuki M, Matsushima S, Toyoda M, Morikage Y, Kubo T (2005) Study of residual stress reduction in welded joints using phase transformation behaviour of welding material. Studies on numerical simulation of temperature, microstructure, and thermal stress histories during welding and their application to welded structures (2nd report). Weld Int 19:773–782

    Article  Google Scholar 

  54. Yamamoto J, Hiraoka K, Mochizuki M (2010) Analysis of martensite transformation behaviour in welded joint using low transformation-temperature welding wire. Sci Technol Weld Join 15:104–110

    Article  Google Scholar 

  55. Murakawa H, Beres M, Davies CM, Rashed S, Vega A, Tsunori M, Nikbin KM, Dye D (2010) Effect of low transformation temperature weld filler metal on welding residual stress. Sci Technol Weld Join 15:393–398

    Article  Google Scholar 

  56. Murakawa H, Beres M, Vega A, Rashed S, Davies CM, Dye D, Nikbin KM (2008) Effect of phase transformation onset temperature on residual stress in welded thin steel plates. Trans JWRI 37:75–80

    Google Scholar 

  57. Mochizuki M, Mikami M, Iyota M, Inoue H, Kasuya T (2009) Effect of low temperature transformation expansion on the restraint stress of high strength steel welds. Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan, June 21–26, pp 464–468

  58. Mikami Y, Nakamura M, Mochizuki M, Toyada M (2009) Effect of transformation temperature and restraint intensity on the reduction of restraint stress by transformation expansion. Q J Japan Weld Soc 27:235–239

    Article  Google Scholar 

  59. Kromm A, Kannengiesser T (2014) Effect of martensitic phase transformation on stress build-up during multilayer welding. Mater Sci Forum 768–769:660–667

    Google Scholar 

  60. Dai H, Mark AF, Moat R, Withers PJ (2010) Investigation of transformation induced plasticity and residual stress analysis in stainless steel welds. Proceedings of the ASME 2010 Pressure Vessels & Piping Division / K-PVP Conference PVP 2010, July 18–22, 2010, Bellevue, Washington, USA, pp 1325–1332

  61. Deng D, Murakawa H (2013) Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel. Comput Mater Sci 78:55–62

    Article  Google Scholar 

  62. Dai H, Moat R, Withers PJ (2011) Modelling the interpass temperature effect on residual stress in low transformation temperature stainless steel welds. Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference PVP 2011, July 17–21, 2011, Baltimore, Maryland, USA, pp 1451–1458

  63. Francis JA, Kundu S, Bhadeshia HKDH, Stone HJ, Rogge RB, Withers PJ, Karlsson L (2009) The effects of filler metal transformation temperature on residual stresses in a high strength steel weld intervening transformations. J Press Vessel Technol 131:1–15

    Article  Google Scholar 

  64. Bhadeshia HKDH, Francis JA, Stone HJ, Kundu S, Rogge RB, Withers PJ, Karlsson L (2007) Transformation plasticity in steel metals. Proceedings of the 10th International Aachen welding Conference Welding and Joining, Key Technologies for the Future, 24–25 October 2007, Eds. Uwe Reisgen, pp 171–179. ISBN: 978-3-8322-6644-8

  65. Dai H, Francis JA, Stone HJ, Bhadeshia HKDH, Withers PJ (2008) Characterizing phase transformations and their effect on ferritic weld residual stresses with X-rays and neutrons. Metall Mater Trans A 39:3070–3078

    Article  Google Scholar 

  66. Stone HJ, Bhadeshia HKDH, Withers PJ (2008) In-situ monitoring of weld transformations to control weld residual stresses. Mater Sci Forum 571–572:393–398

    Article  Google Scholar 

  67. Moat RJ, Stone HJ, Shirzadi AA, Francis JA, Kundu S, Mark AF, Bhadeshia HKDH, Karlsson L, Withers PJ (2011) Design of weld fillers for mitigation of residual stresses in ferritic and austenitic steel welds. Sci Technol Weld Join 16:279–284

    Article  Google Scholar 

  68. Shiga C, Yasuda HY, Hiraoka K, Suzuki H (2010) Effect of Ms temperature on residual stress in welded joints of high-strength steels. Weld World 54:71–79

    Article  Google Scholar 

  69. Heinze C, Kromm A, Schwenk C, Kannengiesser T, Rethmeier M (2011) Welding residual stresses depending on solid-state transformation behaviour studied by numerical and experimental methods. Mater Sci Forum 681:85–90

    Article  Google Scholar 

  70. Altenkirch J, Gibmeier J, Kromm A, Kannengiesser T, Nitschke-Pagel T, Hofmann M (2011) In situ study of structural integrity of low transformation temperature (LTT)-welds. Mater Sci Eng A 528:5566–5575

    Article  Google Scholar 

  71. Gibmeier J, Obelode E, Altenkirch J, Kromm A, Kannengießer T (2014) Residual stress in steel fusion welds joined using low transformation temperature (LTT) filler material. Mater Sci Forum 768–769:620–627

    Google Scholar 

  72. Akselsen OM, Aune R, Olden V (2007) Effects of phase transformation on residual stresses in welding of stainless steels. Int J Offshore Polar Eng 17:145–151

    Google Scholar 

  73. Shiga C, Mraz L, Bernasovsky P, Hiraoka K, Mikula P, Vrana M (2007) Residual stress distribution of steel welded joints with weld metal of low martensite transformation temperature. Weld World 51:11–19

    Article  Google Scholar 

  74. Altenkirch J, Gibmeier J, Kostov V, Kromm A, Kannengiesser T, Doyle S, Wanner A (2011) Time- and temperature-resolved synchrotron X-ray diffraction: observation of phase transformation and strain evolution in novel low temperature transformation weld filler materials. J Strain Anal Eng Des 46:563–579

    Article  Google Scholar 

  75. Kromm A, Kannengiesser T, Gibmeier J (2010) In-situ observation of phase transformations during welding of low transformation temperature filler material. Mater Sci Forum 638–642:3769–3774

    Article  Google Scholar 

  76. Thibault D, Bocher P, Thomas M, Gharghouric M, Côté M (2010) Residual stress characterization in low transformation temperature 13%Cr–4%Ni stainless steel weld by neutron diffraction and the contour method. Mater Sci Eng A 527:6205–6210

    Article  Google Scholar 

  77. Thibault D, Bocher P, Thomas M (2009) Residual stress and microstructure in welds of 13%Cr–4%Ni martensitic stainless steel. J Mater Process Technol 209:2195–2202

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Deutsche Forschungsgemeinschaft (DFG) for financial support (KR 3917/1-1 and KA 1807/4-1). Special thanks goes to Lincoln Electric Europe for the provision of the welding consumables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Kromm.

Additional information

Doc. IIW-2470, recommended for publication by Commission II “Arc Welding and Filler Metals.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kromm, A., Dixneit, J. & Kannengiesser, T. Residual stress engineering by low transformation temperature alloys—state of the art and recent developments. Weld World 58, 729–741 (2014). https://doi.org/10.1007/s40194-014-0155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-014-0155-6

Keywords

Navigation