Skip to main content
Log in

In-Situ Observations of Martensitic Transformation in Blast-Resistant Steel

  • Symposium: Neutron and X-Ray Studies of Advanced Materials IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A hybrid in-situ characterization system, which couples the laser scanning confocal microscopy (LSCM) with the time-resolved X-ray diffraction (TRXRD) measurement with synchrotron radiation, was used to characterize the microstructure evolution during heat-affected zone (HAZ) thermal cycling of high-strength and blast-resistant steel. The combined technique has a time resolution of 0.3 seconds that allows for high-fidelity measurements of transformation kinetics, lattice parameters, and morphological features. The measurements showed a significant reduction in the martensite start transformation temperature with a decrease in the prior austenite grain size. In addition, the LSCM images confirmed the concurrent refinement of martensite packet size with smaller austenite grain sizes. This is consistent with dilatometric observations. The austenite grain size also influenced the rate of transformation (df m /dT); however, the measurements from the hybrid (surface) and dilatometric (volume) measurements were inconsistent. Challenges and future directions of adopting this technique for comprehensive tracking of microstructure evolution in steels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. GLEEBLE is a trademark of Dynamic Systems Inc., Poestenkill, NY.

  2. THERMO-CALC is a trademark of Thermo-Calc, Stockholm.

References

  1. A. Saha and G.B. Olson: J. Comput. Aided Mater. Des., 2007, vol. 14, pp. 177–200.

    Article  CAS  Google Scholar 

  2. A. Saha and G.B. Olson: J. Comput. Aided Mater. Des., 2007, vol. 14, pp. 201–33.

    Article  CAS  Google Scholar 

  3. X. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, and D.N. Seidman: Acta Mater., 2010, vol. 58, pp. 5596–5609.

    Article  CAS  Google Scholar 

  4. X. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, and D.N. Seidman: Metall. Mater. Trans. A, DOI:10.1007/s11661-011-0707-y.

  5. S. Morito, H. Yoshida, T. Maki, and X. Huang: Mater. Sci. Eng. A, 2006, vol. 438, pp. 237–40.

    Article  Google Scholar 

  6. H. Yin, T. Emi, and H. Shibata: Acta Mater., 1999, vol. 47, pp. 1523–35.

    Article  CAS  Google Scholar 

  7. A.M. Elwazri, P. Wanjara, M. Brochu, and S. Yue: Microsc. Microanal., 2005, vol. 11, pp. 634–35.

    Google Scholar 

  8. D.J. Phelan, M.H. Reid, and R.J. Dippenaar: Microsc. Microanal., 2005, vol. 11, pp. 670–71.

    Article  Google Scholar 

  9. N. Oku, K. Asakura, J. Inoue, and T. Koseki: Trends in Welding Research, Proc. 8th Int. Conf., ASM International, Materials Park, OH, 2009, pp. 272–76.

  10. Y. Komizo and H. Terasaki: Sci. Technol. Weld. Join., 2011, vol. 16, pp. 56–60.

    Article  CAS  Google Scholar 

  11. Y. Komizo and H. Terasaki: Sci. Technol. Weld. Join., 2011, vol. 16, pp. 61–67.

    Article  CAS  Google Scholar 

  12. J.W. Elmer, J. Wong, and T. Ressler: Scripta Mater., 2000, vol. 43, pp. 751–57.

    Article  CAS  Google Scholar 

  13. S.S. Babu, J.W. Elmer, J.M. Vitek, and J.M. David: Acta Mater., 2002, vol. 50, pp. 4763–81.

    Article  CAS  Google Scholar 

  14. J. Wong, Ressler, and J.W. Elmer: J. Synchrotron Rad., 2003, vol. 10, pp. 154–67.

  15. S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3281–89.

    Article  CAS  Google Scholar 

  16. H.J. Stone, M.J. Peet, H.K.D.H. Bhadeshia, P.J. Withers, S.S. Babu, and E.D. Specht: Proc. R. Soc. A, 2009, vol. 464, pp. 1009–27.

    Article  Google Scholar 

  17. S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, M.T. Rekveldt, and S. van der Zwaag: Science, 2002, vol. 298, pp. 1003–05.

    Article  CAS  Google Scholar 

  18. Y. Komizo and H. Terasaki: Sci. Technol. Weld. Join., 2011, vol. 16, pp. 79–86.

    Article  CAS  Google Scholar 

  19. H.K.D.H. Bhadeshia: J. Phys. Coll. C4, 1982, vol. 43, pp. C-435–441.

  20. C. Broennimann, E.F. Eikenberry, B. Henrichn, R. Horisberger, G. Huelsen, E. Pohl, B. Schmitt, C. Schulze-Briese, M. Suzuki, T. Tomizaki, H. Toyokawa, and A. Wagner: J. Synchrotron Rad., 2006, vol. 13, pp. 120–30.

    Article  CAS  Google Scholar 

  21. A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, and D. Häusermann: High Press. Res., 1996, vol. 14, pp. 235–48.

    Article  Google Scholar 

  22. A.P. Hammersley: ESRF Internal Report No. ESRF97HA02A, ESRF, Grenoble, Cedex, France, 1997.

  23. H. Terasaki and Y. Komizo: Scripta Mater., 2011, vol. 64, pp. 29–32.

    Article  CAS  Google Scholar 

  24. H. Terasaki: JWRI, Osaka University, Osaka, unpublished research, 2011.

  25. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructure and Properties, Butterworth-Heinemann, Oxford, United Kingdom, 2006.

    Google Scholar 

  26. G. Eldis: in Hardenability Concepts with Applications to Steel, AIME, New York, NY, 1978, pp. 126–57.

  27. S.S. Babu: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1992.

  28. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Inc., Reading, MA, 1978.

    Google Scholar 

  29. H.S. Yang and H.K.D.H. Bhadeshia: Scripta Mater., 2007, vol. 60, pp. 493–95.

    Google Scholar 

  30. T.H. Kannengiesser, S.S. Babu, Y. Komizo, and A.J. Ramirez, eds., In-Situ Studies with Photons, Neutrons and Electrons Scattering, 1st ed., Springer, New York, NY, 2010.

  31. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  32. L. Beres, Z. Beres, and W. Irmer: Weld. Cutt., 1994, vol. 8, pp. 128–30.

    Google Scholar 

  33. E. Hornbogen: Int. Mater. Rev., 1989, vol. 34, pp. 277–96.

    Google Scholar 

  34. M. Tarafder, I. Chattoraj, S. Tarafder, and M. Nasipuri: Mater. Sci. Technol., 2009, vol. 25, pp. 542–48.

    Article  CAS  Google Scholar 

  35. H. Sharma, A. Wattjes, M. Amirthalingam, T. Zuidwijk, N. Geerlofs, and S.E. Offerman: Rev. Scientific Instrum., 2009, vol. 80, p. 123301.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the United States Office of Naval Research (Washington, DC). In addition, encouragement and support of the program managers, Drs. J. Christodoulou and W. Mullins in this research, are also appreciated. Xinghua Yu was partially supported by the IMI Program of the National Science Foundation under Award No. DMR 0843934 for his travel to Spring-8 facilities to perform in-situ phase transformation (LSCM and TRXRD) measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarsanam Suresh Babu.

Additional information

Manuscript submitted February 27, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Babu, S.S., Lippold, J.C. et al. In-Situ Observations of Martensitic Transformation in Blast-Resistant Steel. Metall Mater Trans A 43, 1538–1546 (2012). https://doi.org/10.1007/s11661-011-0746-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0746-4

Keywords

Navigation