Skip to main content
Log in

Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This work presents a unique desymmetrization method to produce a high quantity of Janus nanoparticles (JNPs) using dual-phase oil (melted wax)/water system. The four-stage process includes fixing, primary modification, releasing, and secondary modification. Unlike other works, dispersed hydrophilic nanoparticles were forced to be placed at oil/water interface using an upward water stream formed by buoyancy effects due to the applied heat to the bottom of the container. This eliminated some significant deficiencies of common desymmetrization processes which apply oil (melted wax)/water Pickering emulsion systems, e.g., the coalescence of melted /solidified wax droplets and high cost. The best effect of heat-driven buoyancy flow was ensured using saturation theory. In order to induce asymmetrical surface properties to the applied nanoparticles, (3-aminopropyl)triethoxysilane and hexadecyltrimethoxysilane were used in primary and secondary modification stages, respectively. Produced JNPs were characterized using FTIR, thermogravimetric analysis (TGA), and energy-dispersive X-ray spectroscopy (EDX) tests in order to confirm the attachment of modifier molecules on the surface of the applied nanoparticles. Furthermore, TGA results were used to calculate three-phase contact angle (β) as an important parameter dictating the asymmetric properties of Janus nanoparticles. Also, a dichloromethane/water mixture was used to demonstrate the differences of Janus nanoparticles with similar uniformly modified nanoparticles. Furthermore, using polystyrene/poly(methyl methacrylate) blend, it was shown that produced Janus nanoparticles tend to be placed at the interface while their corresponding uniformly modified nanoparticles stay in polystyrene or poly(methyl methacrylate) phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rotello V (2012) Nanoparticles: building blocks for nanotechnology. Springer, US

    Google Scholar 

  2. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261. doi:10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  3. Mahdavi M, Ahmad M, Haron M, Namvar F, Nadi B, Rahman M, Amin J (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18(7):7533. doi:10.3390/molecules18077533

    Article  CAS  Google Scholar 

  4. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13(1):11–22. doi:10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N

    Article  CAS  Google Scholar 

  5. Hong L, Cacciuto A, Luijten E, Granick S (2006) Clusters of charged Janus spheres. Nano Lett 6(11):2510–2514. doi:10.1021/nl061857i

    Article  CAS  Google Scholar 

  6. Iacovella CR, Horsch MA, Zhang Z, Glotzer SC (2005) Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants. Langmuir 21(21):9488–9494. doi:10.1021/la051035l

    Article  CAS  Google Scholar 

  7. Lv W, Lee KJ, Li J, Park T-H, Hwang S, Hart AJ, Zhang F, Lahann J (2012) Anisotropic Janus catalysts for spatially controlled chemical reactions. Small 8(20):3116–3122. doi:10.1002/smll.201200192

    Article  CAS  Google Scholar 

  8. Dendukuri D, Doyle PS (2009) The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater 21(41):4071–4086. doi:10.1002/adma.200803386

    Article  CAS  Google Scholar 

  9. Shah RK, Kim J-W, Weitz DA (2009) Janus supraparticles by induced phase separation of nanoparticles in droplets. Adv Mater 21(19):1949–1953. doi:10.1002/adma.200803115

    Article  CAS  Google Scholar 

  10. Perro A, Meunier F, Schmitt V, Ravaine S (2009) Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids Surf 332(1):57–62. doi:10.1016/j.colsurfa.2008.08.027

    Article  CAS  Google Scholar 

  11. Pickering SU (1907) CXCVI.—emulsions. J Chem Soc Trans 91(0):2001–2021. doi:10.1039/CT9079102001

    Article  Google Scholar 

  12. Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113(7):5194–5261. doi:10.1021/cr300089t

    Article  CAS  Google Scholar 

  13. Pieranski P (1980) Two-dimensional interfacial colloidal crystals. Phys Rev Lett 45(7):569–572. doi:10.1103/PhysRevLett.45.569

    Article  CAS  Google Scholar 

  14. Jiang S, Granick S (2008) Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 24(6):2438–2445. doi:10.1021/la703274a

    Article  CAS  Google Scholar 

  15. Giermanska-Kahn J, Laine V, Arditty S, Schmitt V, Leal-Calderon F (2005) Particle-stabilized emulsions comprised of solid droplets. Langmuir 21(10):4316–4323. doi:10.1021/la0501177

    Article  CAS  Google Scholar 

  16. Hong L, Jiang S, Granick S (2006) Simple method to produce Janus colloidal particles in large quantity. Langmuir 22(23):9495–9499. doi:10.1021/la062716z

    Article  CAS  Google Scholar 

  17. Hemmer E, Quintanilla M, Légaré F, Vetrone F (2015) Temperature-induced energy transfer in dye-conjugated Upconverting nanoparticles: a new candidate for Nanothermometry. Chem Mater 27(1):235–244. doi:10.1021/cm503799f

    Article  CAS  Google Scholar 

  18. Nasrin R, Alim MA, Chamkha AJ (2012) Buoyancy-driven heat transfer of water–Al2O3 nanofluid in a closed chamber: effects of solid volume fraction, Prandtl number and aspect ratio. Int J Heat Mass Transf 55(25–26):7355–7365. doi:10.1016/j.ijheatmasstransfer.2012.08.011

    Article  CAS  Google Scholar 

  19. Adam NK (1952) The physics and chemistry of surfaces. Oxford University Press, Oxford

    Google Scholar 

  20. Maghsoud Z, Navid Famili MH, Madaeni SS (2010) Phase diagram calculations of water/tetrahydrofurane/poly (vinyl chloride) ternary system based on a compressible regular solution model. Iran Polym J 19(8):581–588

    CAS  Google Scholar 

  21. Barzin J, Sadatnia B (2007) Theoretical phase diagram calculation and membrane morphology evaluation for water/solvent/polyethersulfone systems. Polymer 48(6):1620–1631. doi:10.1016/j.polymer.2007.01.049

    Article  CAS  Google Scholar 

  22. Amirshaqaqi N, Salami-Kalajahi M, Mahdavian M (2014) Investigation of corrosion behavior of aluminum flakes coated by polymeric nanolayer: effect of polymer type. Corros Sci 87:392–396. doi:10.1016/j.corsci.2014.06.045

    Article  CAS  Google Scholar 

  23. Lambert JB (1987) Introduction to organic spectroscopy. Macmillan, London

    Google Scholar 

  24. Xu L, Wang L, Shen Y, Ding Y, Cai Z (2015) Preparation of hexadecyltrimethoxysilane-modified silica nanocomposite hydrosol and superhydrophobic cotton coating. Fibers and Polymers 16(5):1082–1091. doi:10.1007/s12221-015-1082-x

    Article  CAS  Google Scholar 

  25. Samadaei F, Salami-Kalajahi M, Roghani-Mamaqani H, Banaei M (2015) A structural study on ethylenediamine- and poly (amidoamine)-functionalized graphene oxide: simultaneous reduction, functionalization, and formation of 3D structure. RSC Adv 5(88):71835–71843. doi:10.1039/C5RA12086A

    Article  CAS  Google Scholar 

  26. Amirshaqaqi N, Salami-Kalajahi M, Mahdavian M (2014) Corrosion behavior of aluminum/silica/polystyrene nanostructured hybrid flakes. Iran Polym J 23(9):699–706. doi:10.1007/s13726-014-0264-5

    Article  CAS  Google Scholar 

  27. Panahian P, Salami-Kalajahi M, Salami Hosseini M (2014) Synthesis of dual Thermosensitive and pH-sensitive hollow Nanospheres based on poly (acrylic acid-b-2-hydroxyethyl methacrylate) via an atom transfer reversible addition–fragmentation radical process. Ind Eng Chem Res 53(19):8079–8086. doi:10.1021/ie500892b

    Article  CAS  Google Scholar 

  28. Maity D, Chandrasekharan P, Feng S-S, Jun D (2010) Synthesis and studies of APTES functionalized magnetite nanoparticles. In: Nanoscience and Nanotechnology (ICONN), 2010 International Conference on, . IEEE, pp 94–97

  29. Paopattra T, Sarintorn L, Kawee S (2012) Preparation of organosilane treated microcrystalline (SiMCC) and SiMCC/polypropylene composites. Journal of Metals, Materials and Minerals 22:13–19

    Google Scholar 

  30. Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf 173(1–3):1–38. doi:10.1016/S0927-7757(00)00556-2

    Article  CAS  Google Scholar 

  31. Shioji S, Kawaguchi M, Hayashi Y, Tokami K, Yamamoto H (2001) Rehydroxylation of dehydrated silica surfaces by water vapor adsorption. Adv Powder Technol 12(3):331–342. doi:10.1163/156855201750537884

    Article  CAS  Google Scholar 

  32. Acres RG, Ellis AV, Alvino J, Lenahan CE, Khodakov DA, Metha GF, Andersson GG (2012) Molecular structure of 3-Aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J Phys Chem C 116(10):6289–6297. doi:10.1021/jp212056s

    Article  CAS  Google Scholar 

  33. Liu Y, Li Y, Li X-M, He T (2013) Kinetics of (3-aminopropyl)triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir 29(49):15275–15282. doi:10.1021/la403269u

    Article  CAS  Google Scholar 

  34. Bhuiyan MHU, Saidur R, Amalina MA, Mostafizur RM, Islam A (2015) Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Procedia Engineering 105:431–437. doi:10.1016/j.proeng.2015.05.030

    Article  CAS  Google Scholar 

  35. Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2016) A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: experimental and theoretical approaches. Colloids Surf 506:56–62. doi:10.1016/j.colsurfa.2016.06.006

    Article  CAS  Google Scholar 

  36. Vansant EF, Van Der Voort P, Vrancken KC (1995) Characterization and chemical modification of the silica surface. Elsevier Science, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Salami-Kalajahi.

Ethics declarations

Funding

This study was not funded by any institution.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifzadeh, E., Salami-Kalajahi, M., Hosseini, M.S. et al. Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid Polym Sci 295, 25–36 (2017). https://doi.org/10.1007/s00396-016-3977-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3977-5

Keywords

Navigation