Skip to main content
Log in

Recent advances and perspectives on starch nanocomposites for packaging applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Starch nanocomposites are popular and abundant materials in packaging sectors. The aim of this work is to review some of the most popular starch nanocomposite systems that have been used nowadays. Due to a wide range of applicable reinforcements, nanocomposite systems are investigated based on nanofiller type such as nanoclays, polysaccharides and carbonaceous nanofillers. Furthermore, the structures of starch and material preparation methods for their nanocomposites are also mentioned in this review. It is clearly presented that mechanical, thermal and barrier properties of plasticised starch can be improved with well-dispersed nanofillers in starch nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Parra D, Tadini C, Ponce P, Lugao A (2004) Mechanical properties and water vapour transmission in some blends of cassava starch edible films. Carbohyd Polym 58(4):475–481

    Article  CAS  Google Scholar 

  2. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

    Article  CAS  Google Scholar 

  3. Avella M, Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  CAS  Google Scholar 

  4. Petersson M, Stading M (2005) Water vapour permeability and mechanical properties of mixed starch–monoglyceride films and effect of film forming conditions. Food Hydrocoll 19(1):123–132

    Article  CAS  Google Scholar 

  5. Medeiros ES, Dufresne A, Orts WJ (2010) Starch-based nanocomposites. In: Bertolini AC (ed) Starches: characterization, properties, and applications. Taylor & Francis, Boca Raton, pp 205–251

    Google Scholar 

  6. Dong P, Prasanth R, Xu F, Wang X, Li B, Shankar R (2015) Eco-friendly polymer nanocomposite-properties and processing. In: Thakur VK, Thakur MK (eds) Advanced structured materials eco-friendly polymer nanocomposites. Springer, New Delhi, pp 1–15

    Google Scholar 

  7. Famá LM, Goyanes S, Pettarin V, Bernal CR (2015) Mechanical behavior of starch–carbon nanotubes composites. In: Kar KK, Jitendra K, Rana PS (eds) Handbook of polymer nanocomposites. Processing, performance and application. Springer, New York, pp 141–171

    Google Scholar 

  8. García NL, Famá L, D’Accorso NB, Goyanes S (2015) Biodegradable starch nanocomposites. In: Thakur VK, Thakur MK (eds) Advanced structured materials eco-friendly polymer nanocomposites. Springer, New Delhi, pp 17–77

    Google Scholar 

  9. Sam ST, Nuradibah MA, Chin KM, Hani N (2015) Current application and challenges on packaging industry based on natural polymer blending. In: Olatunji O (ed) Natural polymers industry techniques and applications. Springer, New York, pp 163–184

    Google Scholar 

  10. Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Technol Eng 56(12):1307–1344

    Article  CAS  Google Scholar 

  11. Schmitt H, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2012) Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohyd Polym 89(3):920–927

    Article  CAS  Google Scholar 

  12. Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuels Bioprod Bioref 3:329–343

    Article  CAS  Google Scholar 

  13. Khan B, Niazi MB, Samin G, Jahan Z (2016) Thermoplastic starch: a possible biodegradable food packaging material—a review. J Food Process Eng 40(3):1–16

    CAS  Google Scholar 

  14. Visakh PM (2016) Starch: state-of-the-art, new challenges and opportunities. In: Visakh PM, Yu L (eds) Starch-based blends, composites and nanocomposites. Royal Society of Chemistry, Cambridge, pp 1–16

    Google Scholar 

  15. Paes SS, Yakimets I, Mitchell JR (2008) Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocoll 22(5):788–797

    Article  CAS  Google Scholar 

  16. Talja RA, Helén H, Roos YH, Jouppila K (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohyd Polym 67(3):288–295

    Article  CAS  Google Scholar 

  17. Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohyd Polym 69(4):748–755

    Article  CAS  Google Scholar 

  18. Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118(3):702–711

    Article  CAS  Google Scholar 

  19. Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C 44(3):231–274

    Article  CAS  Google Scholar 

  20. Corre DL, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecues 11(5):1139–1153

    Article  CAS  Google Scholar 

  21. Tester RF, Karkalas J, Qi X (2004) Starch-composition, fine structure and architecture. J Cereal Sci 39(2):151–165

    Article  CAS  Google Scholar 

  22. Romero-Bastida CA, Bello-Pérez LA, García MA, Martino MN, Solorza-Feria J, Zaritzky NE (2005) Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohyd Polym 60(2):235–244

    Article  CAS  Google Scholar 

  23. Galdeano MC, Mali S, Grossmann MV, Yamashita F, García MA (2009) Effects of plasticizers on the properties of oat starch films. Mater Sci Eng C 29(2):532–538

    Article  CAS  Google Scholar 

  24. Robyt JF (2008) Starch: Structure, properties, chemistry, and enzymology. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, pp 1437–1472

    Chapter  Google Scholar 

  25. Medeiros ES, Dufresne A, Orts WJ (2010) Starch-based nanocomposites. In: Bertolini AC (ed) Starch characterisation, properties and applications. Taylor and Francis Group, New York, pp 205–251

    Google Scholar 

  26. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112

    Article  Google Scholar 

  27. Olatunji O (2015) Classification of Natural Polymers. In: Olatunji O (ed) Natural polymers industry techniques and applications. Springer, New York, pp 1–17

    Google Scholar 

  28. Madhumitha G, Fowsiya J, Roopan SM, Thakur VK (2018) Recent advances in starch–clay nanocomposites. Int J Polym Anal Charact 5:1–15. https://doi.org/10.1080/1023666x.2018.1447260

    Article  CAS  Google Scholar 

  29. Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348–1368

    Article  CAS  Google Scholar 

  30. Rhim J, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci 47(4):411–433

    Article  CAS  Google Scholar 

  31. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303

    Article  Google Scholar 

  32. He Y, Kong W, Wang W, Liu T, Liu Y, Gong Q, Gao J (2012) Modified natural halloysite/potato starch composite films. Carbohyd Polym 87(4):2706–2711

    Article  CAS  Google Scholar 

  33. Yoon S, Chough S, Park H (2006) Properties of starch-based blend films using citric acid as additive. II. J Appl Polym Sci 100(3):2554–2560

    Article  CAS  Google Scholar 

  34. Nyankson E, Olasehinde O, John VT, Gupta RB (2015) Surfactant-loaded halloysite clay nanotube dispersants for crude oil spill remediation. Ind Eng Chem Res 54(38):9328–9341

    Article  CAS  Google Scholar 

  35. Scarfato P, Maio LD, Incarnato L (2015) Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. J Appl Polym Sci 132(48):42597. https://doi.org/10.1002/app.42597

    Article  CAS  Google Scholar 

  36. Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohyd Polym 79(3):547–554

    Article  CAS  Google Scholar 

  37. Sadegh-Hassani F, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:458–462

    Article  CAS  Google Scholar 

  38. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49(4):950–956

    Article  CAS  Google Scholar 

  39. Dean K, Yu L, Wu DY (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67(3–4):413–421

    Article  CAS  Google Scholar 

  40. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  Google Scholar 

  41. Wei L, Hu N, Zhang Y (2010) Synthesis of polymer–mesoporous silica nanocomposites. Materials 3(7):4066–4079

    Article  CAS  Google Scholar 

  42. Swain SK, Patra SK, Kisku SK (2013) Study of thermal, oxygen-barrier, fire-retardant and biodegradable properties of starch bionanocomposites. Polym Compos 35(7):1238–1243

    Article  CAS  Google Scholar 

  43. Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10–11):1590–1628

    Article  CAS  Google Scholar 

  44. Raheel M, Yao K, Gong J, Chen X, Liu D, Lin Y et al (2014) Poly(vinyl alcohol)/GO-MMT nanocomposites: preparation, structure and properties. Chin J Polym Sci 33(2):329–338

    Article  CAS  Google Scholar 

  45. Sapalidis AA, Katsaros FK, Kanellopoulos NK (2011) PVA/montmorillonite nanocomposites: development and properties. In: Cuppoletti J (ed) Nanocomposites and polymers with analytical methods. In Tech, Rijeka, pp 29–50

    Google Scholar 

  46. Lilichenko N, Maksimov RD, Zicans J, Meri RM, Plume E (2008) A biodegradable polymer nanocomposite: mechanical and barrier properties. Mech Compos Mater 44(1):45–56

    Article  CAS  Google Scholar 

  47. Chen B, Evans JR (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohyd Polym 61(4):455–463

    Article  CAS  Google Scholar 

  48. Schlemmer D, Angélica RS, Sales MJ (2010) Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos Struct 92(9):2066–2070

    Article  Google Scholar 

  49. Llanos JH, Tadini CC (2018) Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 107:371–382

    Article  CAS  Google Scholar 

  50. Park H, Li X, Jin C, Park C, Cho W, Ha C (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287(8):553–558

    Article  CAS  Google Scholar 

  51. Issa AT, Schimmel KA, Worku M, Shahbazi A, Ibrahim SA, Tahergorabi R (2018) Sweet potato starch-based nanocomposites: development, characterization, and biodegradability. Starch-Stärke 1700273:1–8. https://doi.org/10.1002/star.201700273

    Article  CAS  Google Scholar 

  52. Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2014) Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polym Eng Sci 55(3):573–580

    Article  CAS  Google Scholar 

  53. Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2014) Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. J Appl Polym Sci 132(4):41341. https://doi.org/10.1002/app.41341

    Article  CAS  Google Scholar 

  54. Xie Y, Chang PR, Wang S, Yu J, Ma X (2011) Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. Starch composites. Carbohyd Polym 83(1):186–191

    Article  CAS  Google Scholar 

  55. Meira SM, Zehetmeyer G, Scheibel JM, Werner JO, Brandelli A (2016) Starch–halloysite nanocomposites containing nisin: characterization and inhibition of Listeria monocytogenes in soft cheese. LWT Food Sci Technol 68:226–234

    Article  CAS  Google Scholar 

  56. Huang M, Yu J (2005) Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites. J Appl Polym Sci 99(1):170–176

    Article  CAS  Google Scholar 

  57. Cyras VP, Manfredi LB, Ton-That M, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohyd Polym 73(1):55–63

    Article  CAS  Google Scholar 

  58. Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20(6):2981–2989

    Article  CAS  Google Scholar 

  59. Teixeira ED, Pasquini D, Curvelo AA, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohyd Polym 78(3):422–431

    Article  CAS  Google Scholar 

  60. Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69(3–4):500–506

    Article  CAS  Google Scholar 

  61. Babaee M, Jonoobi M, Hamzeh Y, Ashori A (2015) Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohyd Polym 132:1–8. https://doi.org/10.1016/j.carbpol.2015.06.043

    Article  CAS  Google Scholar 

  62. Fabra MJ, López-Rubio A, Ambrosio-Martín J, Lagaron JM (2016) Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll 61:261–268

    Article  CAS  Google Scholar 

  63. Ma X, Chang PR, Yu J (2008) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohyd Polym 72(3):369–375

    Article  CAS  Google Scholar 

  64. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd Polym 82(2):337–345

    Article  CAS  Google Scholar 

  65. Aloui H, Khwaldia K, Hamdi M, Fortunati E, Kenny JM, Buonocore GG, Lavorgna M (2016) Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA based nanocomposites. ACS Sustain Chem Eng 4(3):794–800

    Article  CAS  Google Scholar 

  66. Sofla MR, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol 7(3):035004

    Article  CAS  Google Scholar 

  67. Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510

    Article  CAS  Google Scholar 

  68. Ma X, Chang PR, Yu J, Stumborg M (2009) Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohyd Polym 75(1):1–8

    Article  CAS  Google Scholar 

  69. García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohyd Polym 84(1):203–210

    Article  CAS  Google Scholar 

  70. González K, Retegi A, González A, Eceiza A, Gabilondo N (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohyd Polym 117:83–90

    Article  CAS  Google Scholar 

  71. Guimarães J, Wypych F, Saul C, Ramos L, Satyanarayana K (2010) Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohyd Polym 80(1):130–138

    Article  CAS  Google Scholar 

  72. Liu L, Barber AH, Nuriel S, Wagner HD (2005) Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl-alcohol) nanocomposites. Adv Funct Mater 15(6):975–980

    Article  CAS  Google Scholar 

  73. Cheng J, Zheng P, Zhao F, Ma X (2013) The composites based on plasticized starch and carbon nanotubes. Int J Bio Macromol 59:13–19

    Article  CAS  Google Scholar 

  74. Koinkar P, Kumar A, Avasthi DK, More M, Murakami R (2015) The high energy ion irradiation impact on carbon nanotubes. In: Kar KK, Jitendra K, Rana PS (eds) Handbook of polymer. Nanocomposites processing, performance and application. Springer, New York, pp 1–12

    Google Scholar 

  75. Park S, Lee S, Jin F (2015) Surface modification of carbon nanotubes for high-performance polymer composites. In: Kar KK, Jitendra K, Rana PS (eds) Handbook of polymer nanocomposites. Processing, performance and application. Springer, New York, pp 13–59

    Google Scholar 

  76. Famá L, Rojo PG, Bernal C, Goyanes S (2012) Biodegradable starch based nanocomposites with low water vapour permeability and high storage modulus. Carbohyd Polym 87(3):1989–1993

    Article  CAS  Google Scholar 

  77. Kim HM, Lee JK, Lee HS (2011) Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films 519(22):7766–7771

    Article  CAS  Google Scholar 

  78. Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohyd Polym 84(1):631–637

    Article  CAS  Google Scholar 

  79. Ma T, Chang PR, Zheng P, Ma X (2013) The composites based on plasticized starch and graphene oxide/reduced graphene oxide. Carbohyd Polym 94(1):63–70

    Article  CAS  Google Scholar 

  80. Zheng P, Ma T, Ma X (2013) Fabrication and properties of starch–grafted graphene nanosheet/plasticized–starch composites. Ind Eng Chem Res 52(39):14201–14207

    Article  CAS  Google Scholar 

  81. Maisanaba S, Pichardo S, Jordá-Beneyto M, Aucejo S, Cameán AM, Jos Á (2014) Cytotoxicity and mutagenicity studies on migration extracts from nanocomposites with potential use in food packaging. Food Chem Toxicol 66:366–372

    Article  CAS  Google Scholar 

  82. Echegoyen Y, Rodríguez S, Nerín C (2016) Nanoclay migration from food packaging materials. Food Add Contam A 33(3):530–539

    Article  CAS  Google Scholar 

  83. Huang J, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trend Food Sci Technol 45(2):187–199

    Article  CAS  Google Scholar 

  84. Souza VG, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—a review. Food Packag Shelf Life 8:63–70

    Article  Google Scholar 

  85. Arvanitoyannis IS, Bosnea L (2004) Migration of substances from food packaging materials to foods. Crit Rev Food Sci 44(2):63–76

    Article  CAS  Google Scholar 

  86. European Union (2011) Commission regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union L12:1–89.

    Google Scholar 

  87. Adhikari B, Chaudhary D, Clearfeuille E (2009) The effect of starch-plasticiser(s) interactions on the moisture migration behavior of plasticised low amylose-starch films [online]. In: engineering our future: are we up to the challenge? 27–30 September 2009, Burswood Entertainment Complex. Barton, ACT, Engineers Australia, pp 725–734

  88. Noonan GO, Whelton AJ, Carlander D, Duncan TV (2014) Measurement methods to evaluate engineered nanomaterial release from food contact materials. Compr Rev Food Sci Food Saf 13(4):679–692

    Article  CAS  Google Scholar 

  89. Arvanitoyannis IS, Kotsanopoulos KV (2013) Migration phenomenon in food packaging. Food-package interactions, mechanisms, types of migrants, testing and relative legislation—a review. Food Bioprocess Technol 7(1):21–36

    Article  CAS  Google Scholar 

  90. Zhu J, Li X, Huang C, Chen L, Li L (2014) Structural changes and triacetin migration of starch acetate film contacting with distilled water as food simulant. Carbohyd Polym 104:1–7. https://doi.org/10.1016/j.carbpol.2013.12.087

    Article  CAS  Google Scholar 

  91. Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2013) Migration of antimicrobial agents from starch-based films into a food simulant. LWT Food Sci Technol 50(2):432–438

    Article  CAS  Google Scholar 

  92. Huang C, Zhu J, Chen L, Li L, Li X (2014) Structural changes and plasticizer migration of starch-based food packaging material contacting with milk during microwave heating. Food Control 36(1):55–62

    Article  CAS  Google Scholar 

  93. Mauricio-Iglesias M, Peyron S, Guillard V, Gontard N (2010) Wheat gluten nanocomposite films as food-contact materials: migration tests and impact of a novel food stabilization technology (high pressure). J Appl Polym Sci 116:2526–2535

    CAS  Google Scholar 

  94. Conte A, Longano D, Costa C, Ditaranto N, Ancona A, Cioffi N et al (2013) A novel preservation technique applied to fiordilatte cheese. Innov Food Sci Emerg 19:158–165

    Article  CAS  Google Scholar 

  95. Busolo MA, Fernandez P, Ocio MJ, Lagaron JM (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Add Contam A 27(11):1617–1626

    Article  CAS  Google Scholar 

  96. Girdthep S, Worajittiphon P, Molloy R, Lumyong S, Leejarkpai T, Punyodom W (2014) Biodegradable nanocomposite blown films based on poly(lactic acid) containing silver-loaded kaolinite: a route to controlling moisture barrier property and silver ion release with a prediction of extended shelf life of dried longan. Polymer 55(26):6776–6788

    Article  CAS  Google Scholar 

  97. Schmidt B, Katiyar V, Plackett D, Larsen E, Gerds N, Koch CB, Petersen J (2011) Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Addit Contam A 28(7):956–966

    Article  CAS  Google Scholar 

  98. Schmidt B, Petersen J, Koch CB, Plackett D, Johansen N, Katiyar V, Larsen E (2009) Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites. Food Addit Contam A 26(12):1619–1627

    Article  CAS  Google Scholar 

  99. Mutsuga M, Kawamura Y, Tanamoto K (2008) Migration of lactic acid, lactide and oligomers from polylactide food-contact materials. Food Addit Contam A 25(10):1283–1290

    Article  CAS  Google Scholar 

  100. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny J (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohyd Polym 90(2):948–956

    Article  CAS  Google Scholar 

  101. Mattioli S, Peltzer M, Fortunati E, Armentano I, Jiménez A, Kenny J (2013) Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon 63:274–282

    Article  CAS  Google Scholar 

  102. Maio LD, Scarfato P, Milana MR, Feliciani R, Denaro M, Padula G, Incarnato L (2013) Bionanocomposite polylactic acid/organoclay films: functional properties and measurement of total and lactic acid specific migration. Packag Technol Sci 27(7):535–547

    Article  CAS  Google Scholar 

  103. Störmer A, Bott J, Kemmer D, Franz R (2017) Critical review of the migration potential of nanoparticles in food contact plastics. Trend Food Sci Technol 63:39–50

    Article  CAS  Google Scholar 

  104. Adhikari B, Chaudhary DS, Clerfeuille E (2010) Effect of plasticizers on the moisture migration behavior of low-amylose starch films during drying. Dry Technol 28(4):468–480

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Higher Committee for Developing Education (HCDE) in Iraq is acknowledged for funding this research through a Ph.D. scholarship awarded to Zainab W. Abdullah at Curtin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, Z.W., Dong, Y. Recent advances and perspectives on starch nanocomposites for packaging applications. J Mater Sci 53, 15319–15339 (2018). https://doi.org/10.1007/s10853-018-2613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2613-9

Keywords

Navigation