Skip to main content
Log in

A biodegradable polymer nanocomposite: Mechanical and barrier properties

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The preparation of an environmentally friendly nanocomposite based on plasticized potato starch and unmodified montmorillonite clay is described. Data on the influence of montmorillonite concentration on the mechanical properties of the materials obtained are reported. The effective elastic constants of the nanocomposites are calculated. The calculation results are compared with experimental data. The influence of montmorillonite content on the moisture permeability is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Fomin and V. V. Guzeev, “Biodegradable polymers, state of the art and prospectives of application,” Plast. Massy, No. 2, 42–48 (2001).

  2. D. V. Loshadkin, “Biodegradable plastics: types of materials, their basic properties, and prospective industrial applications,” Plast. Massy, No. 7, 41–44 (2002).

  3. A. I. Suvorova, I. S. Tyukova, and E. I. Trufanova, “Biodegradable polymeric materials based on starch,” Uspekhi Khimii, No. 5, 494–503 (2000).

  4. O. A. Yermolovich, Biodegradable Packing Films Based on Chemically Modified Polyolefins and Starches, PhD Theses [in Russian], Inst. Mekh. Metallopolim., Minsk (2006).

    Google Scholar 

  5. N. S. Vinidiktova, O. A. Yermolovich, V. A. Goldade, and L. S. Pinchuk, “Strength of biodegradable polypropylene tapes filled with modified starch,” Mech. Compos. Mater., 42, No. 3, 273–282 (2006).

    Article  CAS  Google Scholar 

  6. M. L. Sherieva, G. B. Shustov, and Z. L. Beslaneeva, “Biodegradable compositions on the basis of polyethylene of high density and starch,” Plast. Massy, No. 8, 46–48 (2007).

  7. M. Thakore, S. Iyer, A. Desai, A. Lele, and S. Devi, “Morphology, thermomechanical properties and biodegradability of low density polyethylene/starch blends,” J. Appl. Polym. Sci., 74, 2791–2802 (1999).

    Article  CAS  Google Scholar 

  8. M. Hakkarainen, A.-Ch. Albertsson, and S. Karlsson, “Susceptibility of starch-filled and starch-based LDPE to oxygen in water and air,” J. Appl. Polym. Sci., 66, 959–967 (1997).

    Article  CAS  Google Scholar 

  9. A. Dufrence and M. R. Vignon, “Improvement of starch film performances using cellulose microfibrils,” Macromolecules, 31, No. 8, 2693–2696 (1998).

    Article  Google Scholar 

  10. S. Komarneni, “Nanocomposites,” J. Mater. Chem., 2, No. 12, 1219–1230 (1992).

    Article  CAS  Google Scholar 

  11. H.-M. Park, X. Li, C.-Z. Jin, C.-Y. Park, W.-J. Cho, and C.-S. Ha, “Preparation and properties of biodegradable thermoplastic starch/clay hybrids,” Macromol. Mater. Eng., 287, No. 8, 553–558 (2002).

    Article  CAS  Google Scholar 

  12. S. A. McGlashan and P. J. Halley, “Preparation and characterization of biodegradable starch-based nanocomposite materials,” Polym. Int., 52, 1767–1773 (2003).

    Article  CAS  Google Scholar 

  13. H.-M. Park, W.-K. Lee, C.-Y. Park, W.-J. Cho, and C.-S. Ha, “Environmentally friendly polymer hybrids. Pt. 1. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites,” J. Mater. Sci., 38, 909–915 (2003).

    Article  CAS  Google Scholar 

  14. X. Qiao, W. Jiang, and K. Sun, “Reinforced thermoplastic acetylated starch with layered silicates, ” Starch/Stärke, 57, 581–586 (2005).

    Article  CAS  Google Scholar 

  15. P. Kampeerapappun, D. Aht-ong, D. Pentrakoon, and K. Strikulkit, “Preparation of cassava starch/montmorillonite composite film,” Carbohydrate Polym., 67, 155–163 (2007).

    Article  CAS  Google Scholar 

  16. R. D. Maksimov, S. Gaidukovs, M. Kalnins, J. Zicans, and E. Plume, “A nanocomposite based on a styrene-acrylate copolymer and native montmorillonite clay. 2. Modelling of the elastic properties,” Mech. Compos. Mater., 42, No. 2, 163–172 (2006).

    Article  CAS  Google Scholar 

  17. M. A. Osman, V. Mittal, M., and U. W. Suter, “Epoxy-layered silicate nanocomposites and their gas permeation properties,” Macromolecules, 37, 7250–7257 (2004).

    Article  CAS  Google Scholar 

  18. J. C. Matayabas and S. R. Turner, “Nanocomposite technology for enhancing the gas barrier of polyethylene terephthalate,” in: T. J. Pinnavaia and G. W. Beall (eds.), Polymer-Clay Nanocomposites, John Wiley & Sons, Chichester-New York (2001), pp. 207–226.

    Google Scholar 

  19. G. H. Fredrickson and J. Bicerano, “Barrier properties of oriented disk composites,” J. Chem. Phys., 110, No. 4, 2181–2188 (1999).

    Article  CAS  Google Scholar 

  20. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, “Sorption of water in nylon 6-clay hybrid,” J. Appl. Polym. Sci., 49, 1259–1264 (1993).

    Article  CAS  Google Scholar 

  21. N. Yu. Kovaleva, P. N. Brevnov, V. G. Grinev, S. P. Kuznetsov, I. V. Pozdnyakov, S. N. Chvalun, E. A. Sinevich, and L. A. Novokshenova, “Synthesis of nanocomposites based on polyethylene and layered silicates by the method of intercalation polymerization,” Vysokomol. Soed., 46A, No. 6, 1045–1051 (2004).

    Google Scholar 

  22. R. D. Maksimov, S. Gaidukovs, J. Zicans, M. Kalnins, E. Plume, V. Spacek, and P. Sviglerova, “A nanocomposite based on a styrene-acrylate copolymer and organically modified montmorillonite. 2. Barrier and thermal properties,” Mech. Compos. Mater., 42, No. 4, 353–362 (2006).

    Article  CAS  Google Scholar 

  23. C. E. Rogers, “Solubility and diffusion,” in: D. Fox, M. M. Labes, and A. Weissberger (eds.), Physics and Chemistry of the Organic Solid State. Vol. II, Interscience Publ., John Wiley & Sons, New York-London-Sydney (1965).

    Google Scholar 

  24. S. A. Reitlinger, Permeability of Polymer Materials [in Russian], Khimiya, Moscow (1974).

    Google Scholar 

  25. L. E. Nielsen, “Models for the permeability of filled polymer systems,” J. Macromol. Sci. (Chem.), A1(5), 929–942 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Mekhanika Kompozitnykh Materialov, Vol. 44, No. 1, pp. 61–76, January–February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilichenko, N., Maksimov, R.D., Zicans, J. et al. A biodegradable polymer nanocomposite: Mechanical and barrier properties. Mech Compos Mater 44, 45–56 (2008). https://doi.org/10.1007/s11029-008-0006-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-008-0006-x

Keywords

Navigation