Skip to main content
Log in

Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A green method—joint mechanical grinding and high pressure homogenization—was used to defibrillate paper pulp into nanofibrils. The prepared cellulose nanofibrils (CNF) were then blended with PVA in an aqueous system to prepare transparent composite film. The size and morphology of the nanofibrils and their composites were observed, and the structure and properties were characterized. The results showed that CNFs are beneficial to improve the crystallinity, mechanical strength, Young’s modulus, T g and thermal stability of the PVA matrix because of their high aspect ratio, crystallinity and good compatibility. Therefore, nano cellulosic fibrils were proven to be an effective reinforcing filler for the hydrophilic polymer matrix. Moreover, the green fabrication approaches will be helpful to build up biodegradable nanocomposites with wide applications in functional environmentally friendly materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Cheng QZ, Wang SQ, Rials TG (2009) Poly vinyl alcohol nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A 40:218–224

    Article  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Elizabeth FR, Fábia SC, Andrey PL, Romulo CL, Luiz GH, Wander LV, Zelia IPL, Herman SM (2006) Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9(2):185–191

    Article  Google Scholar 

  • Falcão EHL, Azevêdo WM (2002) Polyaniline–poly(vinyl alcohol) composite as an optical recording material. Synth Metals 128:149–154

    Article  Google Scholar 

  • French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. doi:10.1007/s10570-013-0030-4

    Google Scholar 

  • Gilberto S, Julien B, Nadège F, Sabrina B, Stéphane M, Alain D (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91(2):711–717

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Huang B, Tang LR, Dai DS, Ou W, Li T, Chen XR (2011) Biomaterials science and engineering. Plenum Press, Croatia, pp 139–153

    Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  • Jeong BH, Hoek EMV, Yan YS, Subramani A, Huang XF, Hurwitz G, Ghosh AK, Jawor A (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294(1–2):1–7

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2):626–639

    CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Kurumova M, Lopez D, Benevente R, Mijangos C, Perena JM (2000) Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer 41:9265–9272

    Article  Google Scholar 

  • Lee SY, Mohan DJ, Kang IA, Doh GH, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fiber Polym 10(1):77–82

    Article  CAS  Google Scholar 

  • Liu D, Zhong T, Chang PR, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101(7):2529–2536

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high strength plant fiber based composites. Appl Phys A 78(4):547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15(4):555–559

    Article  CAS  Google Scholar 

  • Nogi M, Shinsuke I, Kentaro A, Keishin H, Nakagaito AN, Hiroyuki Y (2006) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88(13):133124–133127

    Article  Google Scholar 

  • Panaitescu DM, Nechita P, Iovu H, Iorga MD, Ghiurea M, Serban D (2007) Compozite din polipropilena si microfibrile celulozice obtinute prin tratamente mecano-chimice. Mater Plast 44(3):195–198

    CAS  Google Scholar 

  • Prajapati GK, Gupta PN (2011) Comparative study of the electrical and dielectric properties of PVA–PEG–Al2O3–MI (M = Na, K, Ag) complex polymer electrolytes. Physica B 406(15–16):3108–3113

    Article  CAS  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Schmidt G, Malwitz MM (2003) Properties of polymer–nanoparticle composites. Curr Opin Colloid Interface Sci 8:103–108

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432

    Article  CAS  Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7–8):1187–1192

    Article  CAS  Google Scholar 

  • Tadokoro H, Seki S, Nitta I (1956) Some information on the infrared absorption spectrum of polyvinyl alcohol from deuteration and pleochroism. J Polym Sci 22:563–566

    Article  CAS  Google Scholar 

  • Wong KKH, Hutter JL, Zinke-Allmang M, Wan W (2009) Physical properties of ion beam treated electrospun poly(vinyl alcohol) nanofibers. Eur Polym J 45(5):1349–1358

    Article  CAS  Google Scholar 

  • Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15):3538–3543

    Article  CAS  Google Scholar 

  • Yang X, Li L, Shang S, Tao XM (2010) Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51:3431–3435

    Article  CAS  Google Scholar 

  • Yang X, Shang S, Li L (2011) Layer-structured poly(vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. J Appl Polym Sci 120:1355–1360

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Nos. 51103073 and 21277073), Scientific Research Foundation for Returned Overseas Chinese Scholars, Natural Science Foundation of Jiangsu Province (No. BK2011828), Qing Lan Project of Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Sun, X., Tian, H. et al. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20, 2981–2989 (2013). https://doi.org/10.1007/s10570-013-0073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0073-6

Keywords

Navigation