Skip to main content
Log in

A thermodynamic study of inverse bainitic transformation

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of Cr, Mn, and the isothermal holding temperature on inverse bainitic transformation in hypereutectoid steels is investigated. Thermodynamic driving force is calculated for the onset of nucleation of cementite and ferrite from parent austenite, Hultgren extrapolation of Ae3 and Acm phase boundaries, and the molar Gibbs energy change for austenite to ferrite transformation. For a given carbon concentration above the eutectoid carbon concentration, inverse bainite is favored at a lower Cr and higher Mn concentrations in the steel. With the increase in Cr concentration, the inverse bainitic start temperature has been found to increase. Cr partitioning from parent austenite to form Cr7C3 or Cr23C6 occurs only at prolonged transformation time (10000 s and above), by when the inverse bainitic transformation is complete. Cementite is the favored carbide nucleating from parent austenite during the inverse bainitic transformation. With the increase in Mn concentration, both the inverse bainitic start and finish temperatures have been found to decrease. For a given chemical composition, inverse bainite is generally favored below the pearlitic transformation temperature. Inverse bainitic transformation gets suppressed when the isothermal transformation temperature is lowered, in which case conventional upper/lower bainite is the favored transformation product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Adapted from Ref. [15]

Figure 13
Figure 14

Similar content being viewed by others

References

  1. Hillert M (1957) The role of interfacial energy during solid state phase transformations. Jernkontorets Ann 141(11):757–789

    Google Scholar 

  2. Kinsman KR, Aaronson HI (1970) The inverse bainite reaction in hypereutectoid Fe–C alloys. Metall Mater Trans 1(5):1485–1488

    Article  Google Scholar 

  3. Lee H, Spanos G, Shiflet G, Aaronson H (1988) Mechanisms of the bainite (non-lamellar eutectoid) reaction and a fundamental distinction between the bainite and pearlite (lamellar eutectoid) reactions. Acta Metall 36(4):1129–1140

    Article  Google Scholar 

  4. Goldenstein H, Alexander J, Cifuentes B, Sinatora A (2005) Non classical eutectoid decomposition products morphologies in Fe–Cr–C and Fe–Cr–Mo–C steels, solid–solid phase transformations in inorganic materials. TMS

  5. Goldenstein H, Cifuentes JA (2006) Overall kinetics and morphology of the products of austenite decomposition in a Fe–0.46 Pct C–5.2 Pct Cr alloy transformed isothermally above the bay. Metall Mater Trans A 37(6):1747–1755

    Article  Google Scholar 

  6. Kolmskog P, Borgenstam A (2011) Eutectoid transformations in 4.12 mass Pct Cr 0.88 mass Pct C steel. Metall Mater Trans A 42(13):3941–3951

    Article  Google Scholar 

  7. Kolmskog P (2013) Does bainite form with or without diffusion? The experimental and theoretical evidence. Ph.D. thesis; KTH, Sweden

  8. Goulas C, Mecozzi MG, Sietsma J (2016) Bainite formation in medium-carbon low-silicon spring steels accounting for chemical segregation. Metall Mater Trans A 47(6):3077–3087

    Article  Google Scholar 

  9. Kannan R, Wang Y, Li L (2017) Identification of inverse bainite in Fe–0.84C–1Cr–1Mn hypereutectoid low alloy steel. Metall Mater Trans A 48(3):948–952

    Article  Google Scholar 

  10. Kannan R, Wang Y, Li L (2017) Microstructural evolution of inverse bainite in a hypereutectoid low alloy steel. Metall Mater Trans A 48(12):6038–6054

    Article  Google Scholar 

  11. Kannan R, Wang Y, Nouri M, Li D, Li L (2018) Instrumented indentation study of bainite/martensite duplex microstructure. Mater Sci Eng A 713:1–6

    Article  Google Scholar 

  12. Borgenstam A, Hedström P, Hillert M, Kolmskog P, Stormvinter A, Ågren J (2011) On the symmetry among the diffusional transformation products of austenite. Metall Mater Trans A 42(6):1558–1574

    Article  Google Scholar 

  13. Modin H, Modin S (1955) Pearlite and bainite structures in a eutectoid carbon steel: an electron microscopic investigation Jernkont Ann 139(8):481–515

    Google Scholar 

  14. Spanos G, Fang HS, Sarma DS, Aaronson HI (1990) Influence of carbon concentration and reaction temperature upon bainite morphology in Fe–C–2 Pct Mn alloys. Metall Trans A 21(6):1391–1411

    Article  Google Scholar 

  15. Hultgren A (1947) Isothermal transformation of austenite. Trans ASM 39:915–1005

    Google Scholar 

  16. Christian J (2002) Chapter 17: Eutectoidal transformations. In: The theory of transformations in metals and alloys, pp 797–817

  17. Hillert M (2008) Phase equilibria, phase diagrams and phase transformations—their thermodynamic basics

  18. Andersson JO, Helander T, Höglund L, Shi P, Sundman B (2002) Thermo-calc and DICTRA, computational tools for materials science. Calphad 26(2):273–312

    Article  Google Scholar 

  19. Matcalc—solid state and kinetics precipitation. 2017-09-07. http://matcalc.tuwien.ac.at/

  20. Miroshnichenko I (1966) Crystallization processes. Consultant’s Bureau, New York, pp 55–59

    Book  Google Scholar 

  21. Malakhov DV, Panahi D, Gallerneault M (2010) On the formation of intermetallics in rapidly solidifying Al–Fe–Si alloys. Calphad 34(2):159–166

    Article  Google Scholar 

  22. Purdy R, Malakhov D, Zurob H (2004) Driving forces for the onset of precipitation in the course of multicomponent alloy solidification. In: Proceeding of the 6th international school-conference, phase diagrams in materials science, pp 20–41

  23. Kennon NF, Kaye NA (1982) Isothermal transformation of austenite to pearlite and upper bainite in a eutectoid steel. Metall Trans A 13(6):975–978

    Article  Google Scholar 

  24. Aaronson HI, Reynolds WT, Purdy GR (2004) Coupled-solute drag effects on ferrite formation in Fe–C–X systems. Metall Mater Trans A 35(4):1187–1210

    Article  Google Scholar 

  25. Aranda MM, Rementeria R, Capdevila C, Hackenberg RE (2016) Can pearlite form outside of the hultgren extrapolation of the A e3 and A cm phase boundaries? Metall Mater Trans A 47(2):649–660

    Article  Google Scholar 

  26. Kannan R, Wang Y, Li L (2018) A dilatometric analysis of inverse bainite transformation. J Mater Sci 53(5):3692–3708

    Article  Google Scholar 

  27. Bhadeshia H, David SA, Vitek JM, Reed RW (1991) Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel. Mater Sci Technol 7:686–698

    Article  Google Scholar 

  28. Grajcar A, Zalecki W, Skrzypczyk P, Kilarski A, Kowalski A, KoŃodziej S (2014) Dilatometric study of phase transformations in advanced high-strength bainitic steel. J Therm Anal Calorim 118(2):739–748

    Article  Google Scholar 

  29. Xu G, Liu F, Wang L, Hu H (2013) A new approach to quantitative analysis of bainitic transformation in a superbainite steel. Scripta Mater 68(11):833–836

    Article  Google Scholar 

  30. Pak J, Woo D, Bhadeshia HKDH (2012) Bainite: fragmentation of crystallographically homogeneous domains. Int J Mater Res 103(4):476–482

    Article  Google Scholar 

  31. Prado JM, Catalan JJ, Marsal M (1990) Dilatometric study of isothermal phase transformation in a C–Mn steel. J Mater Sci 25(4):1939–1946

    Article  Google Scholar 

  32. Bhadeshia H (2001) Bainite in steels, transformations, microstructure and properties. IOM Communications Ltd, London, pp 747–771

    Google Scholar 

  33. Militzer M, Pandi R, Hawbolt EB (1996) Ferrite nucleation and growth during continuous cooling. Metall Mater Trans A 27(6):1547–1556

    Article  Google Scholar 

  34. Bhadeshia H, Honeycombe R (2017) Heat treatment of steels: hardenability, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  35. Bhadeshia H, Honeycombe R (2017) Solutes that substitute for iron, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  36. Skaland T, Grong Ø, Grong T (1993) A model for the graphite formation in ductile cast iron: part II. Solid state transformation reactions. Metall Trans A 24(10):2347–2353

    Article  Google Scholar 

  37. Labrecque C, Gagné M (1998) Ductile iron: 50 years of continuous development. Can Metall Q 37(5):343–378

    Google Scholar 

  38. Park JY, Taek Choi K, Szpunar JA, Oh KH, Ra HY (2002) Effect of Mn negative segregation through the thickness direction on graphitization characteristics of strip-cast white cast iron. Scripta Mater 46(3):199–203

    Article  Google Scholar 

  39. Zhang Y, Schleich DM (1994) Preparation and characterization of iron manganese carbide by reaction of the oxides and carbon in nitrogen. J Solid State Chem 110(2):270–273

    Article  Google Scholar 

  40. Calcagnotto M, Ponge D, Raabe D (2012) On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall Mater Trans A 43(1):37–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leijun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, R., Wang, Y. & Li, L. A thermodynamic study of inverse bainitic transformation. J Mater Sci 53, 12583–12603 (2018). https://doi.org/10.1007/s10853-018-2541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2541-8

Keywords

Navigation