Skip to main content
Log in

A dilatometric analysis of inverse bainite transformation

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The unique two-stage dilatation curve observed during the inverse bainite transformation of a hypereutectoid low alloy steel is analyzed to understand the transformation kinetics. A new algorithm is proposed to extract the bainitic phase fractions from the raw dilatometry data. The proposed data extraction algorithm is generic that relies only on the density of phases involved in the transformation. To verify the extracted phase fraction, a kinetics model is developed using the principles of diffusion and Johnson–Mehl–Avrami–Kolmogorov kinetics. The predicted phase fractions by the kinetics model agree fairly well with the experimental phase fraction results from dilatometry, metallography, and XRD. The two-stage transformation can be explained by the kinetics of inverse bainite as a diffusion-controlled transformation product. The transformation proceeds in a para-equilibrium mode, involving only the diffusion of carbon at the inverse bainite/parent austenite interface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Liu Y, Wang D, Sommer F, Mittemeijer EJ (2008) Isothermal austenite-ferrite transformation of Fe-0.04 at.% C alloy: Dilatometric measurement and kinetic analysis. Acta Mater 56(15):3833–3842

    Article  Google Scholar 

  2. Militzer M, Mecozzi MG, Sietsma J, van der Zwaag S (2006) Three-dimensional phase field modelling of the austenite-to-ferrite transformation. Acta Mater 54(15):3961–3972

    Article  Google Scholar 

  3. Kolmogorov A (1937) A statistical theory for the recrystallization of metals. Izv Akad Nauk SSSR 1(10):355–359

    Google Scholar 

  4. Johnson W, Mehl R (1939) Reaction kinetics in processes of nucleation and growth. Trans AIME 135(10):416–442

    Google Scholar 

  5. Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7(12):1103–1112

    Article  Google Scholar 

  6. Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8(2):212–224

    Article  Google Scholar 

  7. Christian J (2002) Formal theory of transformation kinetics, chap 12. In: The theory of transformations in metals and alloys, pp 529–552. https://doi.org/10.1016/B978-008044019-4/50016-7

  8. Zener C (1949) Theory of growth of spherical precipitates from solid solution. J Appl Phys 20(10):950–953

    Article  Google Scholar 

  9. Bos C, Sietsma J (2007) A mixed-mode model for partitioning phase transformations. Scr Mater 57(12):1085–1088

    Article  Google Scholar 

  10. Sietsma J, Van Der Zwaag S (2004) A concise model for mixed-mode phase transformations in the solid state. Acta Mater 52(14):4143–4152

    Article  Google Scholar 

  11. Gavard L, Bhadeshia HKDH, MacKay DJC, Suzuki S (1996) Bayesian neural network model for austenite formation in steels. Mater Sci Technol 12(6):453–463

    Article  Google Scholar 

  12. Speyer RF (1994) Thermal analysis of materials. CRC Press, Boca Raton

    Google Scholar 

  13. Garcia de Andres C, Caballero F, Capdevila C, Alvarez L (2002) Application of dilatometric analysis to the study of solid–solid phase transformations in steels. Mater Charact 48(1):101–111

    Article  Google Scholar 

  14. Garcia de Andres C, Caballero F, Capdevila C (1998) Dilatometric characterization of pearlite dissolution in 0.1C–0.5Mn low carbon low manganese steel. Scr Mater 38(12):1835–1842

    Article  Google Scholar 

  15. ASTM A1033-04. A1033-04, Standard practice for quantitative measurement and reporting of hypoeutectoid carbon and low-alloy steel phase transformations. ASTM Standards 2004 4(Reapproved 2015):1–14

  16. Kamyabi-Gol A, Clark SJ, Gibbs JW, Sridhar S, Mendez PF (2016) Quantification of evolution of multiple simultaneous phase transformations using dilation curve analysis (DCA). Acta Mater 102:231–240

    Article  Google Scholar 

  17. Onink M, Tichelaar FD, Brakman CM, Mittemeijer E, van der Zwaag S (1996) Quantitative Analysis of the dilation by decomposition of Fe–C autenites, calcualtion of volume change upon transformation. Z Metallkd 87:24–32

    Google Scholar 

  18. Oh CS, Han HN, Lee CG, Lee TH, Kim SJ (2004) Dilatometric analysis on phase transformations of intercritical annealing of Fe–Mn–Si and Fe–Mn–Si–Cu low carbon TRIP steels. Met Mater Int 10(5):399–406

    Article  Google Scholar 

  19. Zhao J, Mesplont C, De Cooman B (2002) Quantitative analysis of the dilatation during an isothermal decomposition of austenites. Mater Sci Eng A 332(1–2):110–116

    Article  Google Scholar 

  20. Scott C, Drillet J (2007) A study of the carbon distribution in retained austenite. Scr Mater 56(6):489–492

    Article  Google Scholar 

  21. Clarke A, Speer J, Miller M, Hackenberg R, Edmonds D, Matlock DK, Rizzo FC, Clarke KD, De Moor E (2008) Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: a critical assessment. Acta Mater 56(1):16–22

    Article  Google Scholar 

  22. Zhang MX, Kelly P (1998) Determination of carbon content in bainitic ferrite and carbon distribution in austenite by using CBKLDP. Mater Charact 40(3):159–168

    Article  Google Scholar 

  23. Krauss G (2015) Steels processing, structure, and performance, 2nd edn. ASM International, Materials Park, pp 99–112

    Google Scholar 

  24. Bhadeshia HKDH (2001) Bainite in steels, transformations, microstructure and properties, 2nd edn. IOM Communications Ltd., London, pp 277–284

    Google Scholar 

  25. Hillert M (1957) The role of interfacial energy during solid state phase transformations. Jernkont Ann 141:757–789

    Google Scholar 

  26. Kannan R, Wang Y, Li L (2017) Identification of inverse bainite in Fe-0. 84 C-1 Cr-1 Mn hypereutectoid low alloy steel. Metall Mater Trans A 48(3):948–952

    Article  Google Scholar 

  27. Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48(5):1573–1580

    Article  Google Scholar 

  28. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  Google Scholar 

  29. Onink M, Brakman CM, Tichelaar FD, Mittemeijer E, van der Zwaag S, Root JH, Konyer NB (1993) The lattice parameter of austenite and ferrite in Fe–C alloys as function of carbon concentration and temperature. Scr Metall Mater 29:1011–1016

    Article  Google Scholar 

  30. Chae J, Jang J, Zhang G, Kim K, Lee J, Bhadeshia HKDH, Suh DW (2011) Dilatometric analysis of cementite dissolution in hypereutectoid steels containing Cr. Scr Mater 65(3):245–248

    Article  Google Scholar 

  31. Jablonka A, Harste K, Schwerdtfeger K (1991) Thermomechanical properties of iron and iron–carbon alloys: density and thermal contraction. Steel Res 62(1):24–33

    Article  Google Scholar 

  32. Caballero FG, Capdevila C, De Andres CG (2002) Modelling of kinetics and dilatometric behaviour of austenite formation in a low-carbon steel with a ferrite plus pearlite initial microstructure. J Mater Sci 37(16):3533–3540. https://doi.org/10.1023/A:1016579510723

    Article  Google Scholar 

  33. Bhadeshia HKDH (1982) Thermodynamic analysis of isothermal transformation diagrams. Metal Sci 16(3):159–166

    Article  Google Scholar 

  34. Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Analysis of solid state phase transformation kinetics: models and recipes. Int Mater Rev 52(4):193–212

    Article  Google Scholar 

  35. Van der Ven A, Delaey L (1996) Models for precipitate growth during the γ → α + γ transformation in Fe–C and Fe–C–M alloys. Prog Mater Sci 40(3):181–264

    Article  Google Scholar 

  36. Andersson JO, Helander T, Hoglund L, Shi P, Sundman B (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2):273–312

    Article  Google Scholar 

  37. Bhadeshia H, David SA, Vitek JM, Reed RW (1991) Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel. Mater Sci Technol 7:686–698

    Article  Google Scholar 

  38. Takahashi M (1992) Reaustenitisation from bainite in steels. Ph.D. thesis, University of Cambridge

  39. Stuart H, Rindley N (1966) Thermal expansion of cementite and other phases. J Iron Steel Inst 204:711–717

    Google Scholar 

  40. Kannan R, Wang Y, Li L (2017) Microstructural evolution of inverse bainite in a hypereutectoid low alloy steel. Metall Mater Trans A. https://doi.org/10.1007/s11661-017-4373-6

    Google Scholar 

  41. Garcia-Mateo C, Caballero F, Capdevila C, de Andres CG (2009) Estimation of dislocation density in bainitic microstructures using high-resolution dilatometry. Scr Mater 61(9):855–858

    Article  Google Scholar 

  42. Wang J, van der Wolk PJ, van der Zwagg S (2000) On the influence of alloying elements on the bainite reaction in low alloy steels during continuous cooling. J Mater Sci 35:4393–4404. https://doi.org/10.1023/A:1004865209116

    Article  Google Scholar 

  43. Chen H, van der Zwagg S (2014) Predicting the effect of Mo, Ni, and Si on the bainitic stasis. Metall Mater Trans A 45A:3429–3437

    Article  Google Scholar 

  44. Chen H, Borgenstam A, Odqvist J, Zuazo I, Goune M, Agren J, van der Zwagg S (2013) Application of interrupted cooling experiments to study the mechanism of bainitic ferrite formation in steels. Acta Mater 61:4512–4523

    Article  Google Scholar 

  45. Ranganathan S, Von Heimendahl M (1981) The three activation energies with isothermal transformations: applications to metallic glasses. J Mater Sci 16(9):2401–2404. https://doi.org/10.1007/BF01113575

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leijun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Detailed derivation of Eq. 4 in “Algorithm to extract phase fraction from raw dilatometry data” section

Equation 3 is with the assumption that density of cementite and hence \( \lambda_{\theta } \) does not vary with carbon concentration. In Eq. 3, the ratio of sample density to the density of austenite is taken as \( \lambda_{\gamma } \) \( \left( {\lambda_{\gamma } = \frac{{\rho_{o} }}{{\rho_{{\gamma \left( {T,C} \right)}} }}} \right) \).

$$ \frac{{\partial \lambda_{\gamma } }}{\partial t} = \frac{{ -\, \rho_{o} }}{{\rho {}_{{\gamma \left( {T,C} \right)}}}}\frac{1}{{\rho {}_{{\gamma \left( {T,C} \right)}}}}\frac{{\partial \rho_{\gamma } }}{\partial t} = \frac{{ - \rho_{o} }}{{\rho {}_{{\gamma \left( {T,C} \right)}}}}\frac{1}{{\rho {}_{{\gamma \left( {T,C} \right)}}}}\frac{{\partial \rho_{\gamma } }}{{\partial C_{\gamma } }}\frac{{\partial C_{\gamma } }}{\partial t} $$
(31)

Jablonka [31] fitted the variation in density of austenite with carbon content at constant temperature and found that the density of austenite varies linearly with carbon content. The density function of austenite at constant temperature is given by

$$ \rho_{{\gamma \left( {T,C} \right)}} = \rho_{{\gamma \left( {T,C = 0} \right)}} \left( {1 - 0.0146\% C_{\gamma } } \right) $$
(32)
$$ \frac{{\partial \rho_{{\gamma \left( {T,C} \right)}} }}{{\partial C_{\gamma } }} = - \,\rho_{{\gamma \left( {T,C = 0} \right)}} 0.0146 $$
(33)

Substituting Eqs. 32 and 33 in Eq. 31,

$$ \frac{{\partial \lambda_{\gamma } }}{\partial t} = \frac{{\rho_{o} }}{{\rho_{{\gamma \left( {T,C = 0} \right)}} }}\frac{0.0146}{{\left( {1 - 0.0146\% C} \right)^{2} }}\frac{{\partial C_{\gamma } }}{\partial t} $$
(34)

Substituting Eq. 34 in Eq. 3, the volume change rate can now be described by the following differential equation,

$$ \frac{1}{{V_{o} }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{{\rho_{o} }}{{\rho_{{\gamma \left( {T,C = 0} \right)}} }}\frac{0.0146}{{\left( {1 - 0.0146\% C} \right)^{2} }}\frac{{\partial C_{\gamma } }}{\partial t}\left( {1 - f_{\theta } } \right) + \frac{{\partial f_{\theta } }}{\partial t}\rho_{o} \left[ {\frac{{\rho_{{\gamma \left( {T,C} \right)}} - \rho_{\theta } }}{{\rho_{{\gamma \left( {T,C} \right)}} \rho_{\theta } }}} \right] $$
(35)

The second term on the right-hand side in the above equation is negligible and is assumed zero because the fraction of cementite that nucleates and grows at the start of transformation is small, and the rate of change in fraction of cementite formed is also small. The justification for the approximation is given in “Error caused by the approximations used in the derivation of the algorithm” section. Therefore, Eq. 35 can be simplified as

$$ \frac{1}{{V_{o} }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{{\rho_{o} }}{{\rho_{{\gamma \left( {T,C = 0} \right)}} }}\frac{0.0146}{{\left( {1 - 0.0146\% C} \right)^{2} }}\frac{{\partial C_{\gamma } }}{\partial t}\left( {1 - f_{\theta } } \right) $$
(36)

Writing mass balance with respect to carbon,

$$ C_{\gamma } f_{\gamma } + C_{\theta } f_{\theta } = 0.84 $$
$$ C_{\gamma } = \frac{{0.84 - 6.67f_{\theta } }}{{1 - f_{\theta } }} $$
$$ \frac{{\partial C_{\gamma } }}{\partial t} = -\, \frac{5.83}{{\left( {1 - f_{\theta } } \right)^{2} }}\frac{{\partial f_{\theta } }}{\partial t} $$
(37)

Substituting Eq. 37 in Eq. 36,

$$ \frac{1}{{V_{o} }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = -\, \frac{{\rho_{o} }}{{\rho_{{\gamma \left( {T,C = 0} \right)}} }}\frac{0.0146}{{\left[ {1 - 0.0146\left( {\frac{{0.84 - 6.67f_{\theta } }}{{1 - f_{\theta } }}} \right)} \right]^{2} }}\frac{5.83}{{(1 - f_{\theta } )}}\frac{{\partial f_{\theta } }}{\partial t} $$
(38)

The term \( \left[ {1 - 0.0146\left( {\frac{{0.84 - 6.67f_{\theta } }}{{1 - f_{\theta } }}} \right)} \right]^{2} \) is approximately equal to 1. The error caused by making this assumption is given in “Error caused by the approximations used in the derivation of the algorithm” section. Therefore, Eq. 38 can be simplified as

$$ \frac{3}{{L_{o} }}\frac{{{\text{d}}L}}{{{\text{d}}t}} = -\, \frac{{\rho_{o} }}{{\rho_{{\gamma \left( {T,C = 0} \right)}} }}0.0146\frac{5.83}{{(1 - f_{\theta } )}}\frac{{\partial f_{\theta } }}{\partial t} $$
$$ \frac{{{\text{d}}L}}{{{\text{d}}t}} = \frac{{\rho_{o} L_{o} 0.08511}}{{3\rho_{{\gamma \left( {T,C = 0} \right)}} }}\frac{{\partial \left( {{ \ln }\left( {1 - f_{\theta } } \right)} \right)}}{\partial t} $$

which leaves an Euler-type integration scheme as below,

$$ \frac{{L_{2} - L_{1} }}{K} = { \ln }\left[ {\frac{{1 - f_{2} }}{{1 - f_{1} }}} \right] $$

that calculates the fraction of cementite as a function of dilatation obtained from raw dilatometry data.

$$ f_{i + 1} = 1 - \left[ {\left( {1 - f_{i} } \right){ \exp }\left( {\frac{{L_{i + 1} - L_{i} }}{K}} \right)} \right] $$

where

$$ K = \frac{{\rho_{o} L_{o} 0.08511}}{{3\rho_{{\gamma \left( {T,C = 0} \right)}} }} $$

Error caused by the approximations used in the derivation of the algorithm

During the derivation of phase fraction of cementite, in Eq. 35, it is assumed that the contribution by term \( \frac{{\partial f_{\theta } }}{\partial t}\rho_{o} \left[ {\frac{{\rho_{{\gamma \left( {T,C} \right)}} - \rho_{\theta } }}{{\rho_{{\gamma \left( {T,C} \right)}} \rho_{\theta } }}} \right] \) to the phase fraction calculation is negligible. Once, the phase fraction were calculated, the value of the term \( \frac{{\partial f_{\theta } }}{\partial t}\rho_{o} \left[ {\frac{{\rho_{{\gamma \left( {T,C} \right)}} - \rho_{\theta } }}{{\rho_{{\gamma \left( {T,C} \right)}} \rho_{\theta } }}} \right] \) was determined to be 2 × \( 10^{ - 6} \). Error is calculated in the 7-min isothermal hold sample by accounting this term into phase fraction calculation, and it was found that the average error caused by not accounting this term is 7.6 ×  \( 10^{ - 6} \), i.e., 0.076%. The error caused is negligible, and therefore the approximation is valid. During the derivation of phase fraction of cementite, in Eq. 38, it is assumed that the term \( \left[ {1 - 0.0146\left( {\frac{{0.84 - 6.67f_{\theta } }}{{1 - f_{\theta } }}} \right)} \right]^{2} \) is close to unity. Once, the phase fraction was calculated, the value of the term \( \left[ {1 - 0.0146\left( {\frac{{0.84 - 6.67f_{\theta } }}{{1 - f_{\theta } }}} \right)} \right]^{2} \) was calculated and the average value was found to be 0.97653. Error in the phase fraction is calculated by accounting this term, and the absolute average error caused by the approximation is 6.13 × \( 10^{ - 4} \), i.e., 0.061%, which is negligible. Therefore, the approximation is justified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, R., Wang, Y. & Li, L. A dilatometric analysis of inverse bainite transformation. J Mater Sci 53, 3692–3708 (2018). https://doi.org/10.1007/s10853-017-1752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1752-8

Keywords

Navigation