Skip to main content
Log in

Microstructural Evolution of Inverse Bainite in a Hypereutectoid Low-Alloy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural evolution of inverse bainite during isothermal bainite transformation of a hypereutectoid low-alloy steel at 773 K (500 °C) was investigated through a series of interrupted isothermal experiments using a quench dilatometer. Microstructural characterization revealed that the inverse bainitic transformation starts by the nucleation of cementite (Fe3C) from parent austenite as a midrib in the bainitic microstructure. The inverse bainite becomes “degenerated” to typical upper bainite at prolonged transformation times. Crystallographic orientation relationships between the individual phases of inverse bainite microstructure were found to obey

$$ \begin{array}{*{20}l} { < 110 > _{\gamma } || < 1\overline{1} 0 > _{\theta } } \hfill & { < 111 > _{\alpha } || < 1\overline{1} 0 > _{\theta } } \hfill & { < 110 > _{\gamma } || < 111 > _{\alpha } } \hfill \\ {\{ 111\} _{\gamma } ||\{ \overline{2} 21\} _{\theta } } \hfill & {\{ 110\} _{\alpha } ||\{ \overline{2} 21\} _{\theta } \,} \hfill & {\,\{ 111\} _{\gamma } ||\{ 110\} _{\alpha } } \hfill \\ {\{ 111\} _{\gamma } ||\{ 211\} _{\theta } } \hfill & {\,\{ 110\} _{\alpha } ||\{ 211\} _{\theta } } \hfill & {} \hfill \\ \end{array} $$

Furthermore, the crystallographic orientation deviations between the individual phases of inverse bainite microstructure suggest that the secondary carbide nucleation occurs from the inverse bainitic ferrite. Thermodynamic driving force calculations provide an explanation for the observed nucleation sequence in inverse bainite. The degeneracy of inverse bainite microstructure to upper bainite at prolonged transformation times is likely due to the effects of cementite midrib dissolution at the early stage and secondary carbide coarsening at the later stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. RITA L78 is a trademark of LINSEIS—Thermal Analysis Equipment Manufacturer, Germany.

  2. ECOMET is a trademark of Buehler—Metallography Equipment & Supplies for Sample Preparation, IL, USA.

  3. SIGMA is a trademark of Carl Zeiss optical and optoelectronic technology, Germany.

  4. Lower load was used to characterize the hardness bainitic regions, whose fractions were low, especially at lower isothermal holding time (Figure 2(a)). The hardness measurements are validated using an instrumented indentation technique.

  5. It should be noted that ThermoCalc expresses the driving force per mole of the product phase as the decrease in Gibb’s free energy for the formation the product phase from the supersaturated parent phase (−ΔGm). Thus, a negative driving force predicted by ThermoCalc implies that the reaction raises the Gibb’s free energy of the system and the reaction will not take place.

  6. THERMOCALC is a trademark of ThermoCalc Software Inc., Sweden.

  7. Refer to footnote in Section II.

References

  1. H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Trans. A, 1979, vol. 10A, pp. 895–907.

    Article  Google Scholar 

  2. 2.H.K.D.H. Bhadeshia and D.V. Edmonds: Acta Metall., 1980, vol. 28 (9), pp. 1265–73.

    Article  Google Scholar 

  3. 3.C. Zener: Trans. TMS-AIME, 1946, vol. 167, pp. 550–59.

    Google Scholar 

  4. 4.T. Ko and S.A. Cottrell: J. Iron Steel Inst., 1952, vol. 172, p. 307.

    Google Scholar 

  5. M. Hillert: Scripta Mater., 2002, vol. 47, pp. 175–80.

    Article  Google Scholar 

  6. 6.T.Y. Hsu: Metall. Trans. A, 1990, vol. 21A, pp. 811–16.

    Article  Google Scholar 

  7. 7.A. Hultgren: Trans. ASM, 1947, vol. 39, pp. 915–1005.

    Google Scholar 

  8. 8.G. Krauss: Steels: Processing, Structure, and Performance, 2nd ed., ASM International, Materials Park, OH, 2015, pp. 99–112.

    Google Scholar 

  9. 9.H.K.D.H. Bhadeshia: Bainite in Steels, Transformations, Microstructure and Properties, 2nd ed., IOM Communications Ltd., London, 2001, pp. 277–84.

    Google Scholar 

  10. 10.M. Hillert: Jernkont. Ann., 1957, vol. 141, pp. 757–89.

    Google Scholar 

  11. 11.K.R. Kinsman and H.I. Aaronson: Metall. Trans., 1970, vol. 1, pp. 1485–88.

    Article  Google Scholar 

  12. 12.H. Lee, G. Spanos, G. Shiflet, and H. Aaronson: Acta Metall., 1988, vol. 36 (4), pp. 1129–40.

    Article  Google Scholar 

  13. 13.H. Goldenstein and J.A. Cifuentes: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1747–55.

    Article  Google Scholar 

  14. 14.H. Goldenstein, J. Alexander, B. Cifuentes, and A. Sinatora: Solid-Solid Phase Transformations in Inorganic Materials, TMS, Warrendale, PA, 2005, pp. 673–86.

    Google Scholar 

  15. P. Kolmskog. Ph.D. Thesis, KTH, Sweden, 2013.

  16. 16.P. Kolmskog and A. Borgenstam: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3941–51.

    Article  Google Scholar 

  17. 17.C. Goulas, M.G. Mecozzi, and J. Sietsma: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3077–87.

    Article  Google Scholar 

  18. 18.R. Kannan, Y. Wang, and L. Li: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 948–52.

    Article  Google Scholar 

  19. 19.M. Militzer, R. Pandi, and E.B. Hawbolt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1547–56.

    Article  Google Scholar 

  20. 20.N. Doebelin and R. Kleeberg: J. Appl. Crystallogr., 2015, vol. 48 (5), pp. 1573–80.

    Article  Google Scholar 

  21. 21.C. Schneider, W. Rasband, and K. Eliceiri: Nat. Methods, 2012, vol. 9 (7), pp. 671–75.

    Article  Google Scholar 

  22. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louërd, P. Scardie: J. Appl. Crystallogr., 32(1): 36–50.

    Article  Google Scholar 

  23. 23.P.P. Suikkanen, C. Cayron, A.J. DeArdo, and L.P. Karjalainen: J. Mater. Sci. Technol., 2013, vol. 29 (4), pp. 359–66.

    Article  Google Scholar 

  24. 24.N. Zhong, X. Wang, Z. Guo, and Y. Rong: J. Mater. Sci. Technol., 2011, vol. 27, pp. 475–80.

    Article  Google Scholar 

  25. I. Miroshnichenko: in Crytallization Processes, Consultant’s Bureau, New York, 1966, pp. 55–59.

  26. 26.D.V. Malakhov, D. Panahi, and M. Gallerneault: CALPHAD, 2010, vol. 34 (2), pp. 159–66.

    Article  Google Scholar 

  27. 27.M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations—Their Thermodynamic Basics, 2nd ed., Cambridge University Press, London, 2008, pp. 56–62.

    Google Scholar 

  28. R. Purdy, D. Malakhov, and H. Zurob: Proc. 6th Int. School-Conf., Phase Diagrams in Materials Science, 2004, pp. 20–41.

  29. 29.M. Onink, C.M. Brakman, F.D. Tichelaar, E. Mittemeijer, S. van der Zwaag, J.H. Root, N.B. Konyer: Scripta Metall. Mater., 1993, vol. 29 (8), pp. 1011–16.

    Article  Google Scholar 

  30. Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara: Scripta Mater. 2013, 69 (1): 17–20.

    Article  Google Scholar 

  31. 31.Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, T. Ohmura, T. Suzuki, and K. Tsuzaki: Acta Mater., 2015, vol. 84, pp. 375–84.

    Article  Google Scholar 

  32. 32.G. Miyamoto, R. Hori, B. Poorganji, and T. Furuhara: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3436–43.

    Article  Google Scholar 

  33. 33.W.D. Nix and H. Gao: J. Mech. Phys. Solids, 1998, vol. 46 (3), pp. 411–25.

    Article  Google Scholar 

  34. 34.S. Graca, R. Colaco, P. Carvalho, and R. Vilar: Mater. Lett., 2008, vol. 62 (23), pp. 3812–14.

    Article  Google Scholar 

  35. 35.I.B. Timokhina, K.D. Liss, D. Raabe, K. Rakha, H. Beladi, X.Y. Xiong, and P.D. Hodgson: J. Appl. Crystallogr., 2016, vol. 49 (2), pp. 399–414.

    Article  Google Scholar 

  36. 36.I. Timokhina, H. Beladi, X. Xiong, Y. Adachi, and P. Hodgson: Acta Mater., 2011, vol. 59 (14), pp. 5511–22.

    Article  Google Scholar 

  37. 37.I. Lonardelli, M. Bortolotti, W. van Beek, L. Girardini, M. Zadra, and H. Bhadeshia, Mater. Sci. Eng.: A, 2012, vol. 555, pp. 139–47.

    Article  Google Scholar 

  38. 38.A. Korznikov, Y. Ivanisenko, D. Laptionok, I. Safarov, V. Pilyugin, and R. Valiev: Nanostruct. Mater., 1994, vol. 4 (2), pp. 159–67.

    Article  Google Scholar 

  39. 39.J. Languillaume, G. Kapelski, and B. Baudelet: Acta Mater., 1997, vol. 45 (3), pp. 1201–12.

    Article  Google Scholar 

  40. 40.G. Job and F. Herrmann: Eur. J. Phys., 2006, vol. 27 (2), pp. 353–71.

    Article  Google Scholar 

  41. 41.H.B. Aaron and G.R. Kotler: Metall. Trans., 1971, vol. 2, pp. 393–408.

    Article  Google Scholar 

  42. 42.W.C. Chiou, Jr. and E.A. Carter: Surf. Sci., 1970, vol. 530 (1–2), pp. 87–100.

    Google Scholar 

  43. 43.H.R. Wang and W. Wang: Mater. Sci. Technol., 2013, vol. 23 (11), pp. 1305–08.

    Article  Google Scholar 

  44. 44.N.C. Danh, K. Rajan, and W. Wallace: Metall. Trans. A, 1983, vol. 14A, pp. 1843–50.

    Article  Google Scholar 

  45. 45.M. Nicolas and A. Deschamps: Acta Mater., 2003, vol. 5 (20), pp. 6077–94.

    Article  Google Scholar 

  46. 46.J. Park: Mater. Sci. Eng.: A, 1988, vol. 103 (2), pp. 223–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leijun Li.

Additional information

Manuscript submitted February 28, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, R., Wang, Y. & Li, L. Microstructural Evolution of Inverse Bainite in a Hypereutectoid Low-Alloy Steel. Metall Mater Trans A 48, 6038–6054 (2017). https://doi.org/10.1007/s11661-017-4373-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4373-6

Navigation