Skip to main content
Log in

Influence of high-pressure torsion and hot rolling on the microstructure and mechanical properties of aluminum–fullerene composites

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we investigate the impacts of working process, high-pressure torsion (HPT) and hot rolling (HR) on the microstructure and mechanical performance of aluminum-based nanocomposites containing fullerenes. HPT caused severe plastic deformations that generate numerous dislocations and lattice strains, and this stimulated the formation of aluminum carbides (Al4C3) and reduced the hardness during heat treatment. In contrast, the HRed specimens experienced dynamic recovery, and their initial dislocation densities and lattice strains were lower than those of the HPTed specimens. Thus, the HRed composites formed supersaturated aluminum phases as well as aluminum carbides during the heat treatment. The supersaturated phases provided high-density dislocations and severe lattice strains, resulting in an increase in the hardness during the heat treatment. This comparison suggests that the mechanical properties of aluminum–fullerene composites can be controlled by working processes in practical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Tokunaga T, Kaneko K, Sato K, Horita Z (2008) Microstructure and mechanical properties of aluminum–fullerene composite fabricated by high pressure torsion. Scr Mater 58(9):735–738

    Article  Google Scholar 

  2. Khalid FA, Beffort O, Klotz UE, Keller BA, Gasser P, Vaucher S (2003) Study of microstructure and interfaces in an aluminum–C60 composites material. Acta Mater 51:4575–4582

    Article  Google Scholar 

  3. Genova V, Gozzi D, Latini A (2015) High-temperature resistivity of aluminum–carbon nanotube composites. J Mater Sci 50(21):7087–7096. doi:10.1007/s10853-015-9263-y

    Article  Google Scholar 

  4. Liu ZY, Xiao BL, Wang WG, Ma ZY (2014) Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J Mater Sci Technol 30(7):649–655

    Article  Google Scholar 

  5. Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, Koratkar N (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528(27):7933–7937

    Article  Google Scholar 

  6. Wang J, Li Z, Fan G, Pan H, Chen Z, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66(8):594–597

    Article  Google Scholar 

  7. Alhashmy HA, Nganbe M (2015) Lamincate squeeze casting of carbon fiber reinforced aluminum matrix composites. Mater Des 67:154–158

    Article  Google Scholar 

  8. Sharma NK, Misra RK, Sharma S (2017) Finite element modeling of effective thermomechanical properties of Al–B4C metal matrix composites. J Mater Sci 52(3):1416–1431. doi:10.1007/s10853-016-0435-1

    Article  Google Scholar 

  9. Peat T, Galloway A, Toumpis A, Mcnutt P, Iqbal N (2017) The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing. Appl Surf Sci 396(28):1635–1648

    Article  Google Scholar 

  10. Bakshi SR, Singh V, Seal S, Agarwal A (2009) Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf Coat Technol 203(10–11):1544–1554

    Article  Google Scholar 

  11. Hwang J, Yoon T, Jin SH, Lee J, Kim TS (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25(46):6724–6729

    Article  Google Scholar 

  12. Tu JF, Rajule N, Molian P, Liu Y (2016) Laser synthesis of a copper-single-walled carbon nanotube nanocomposite via molecular-level mixing and non-equilibrium solidification. J Phys D Appl Phys 49:495301–495311

    Article  Google Scholar 

  13. Pavithra CLP, Sarada BV, Rajulapati KV, Rao TN, Sundararajan G (2014) A new electrochemical approach for the synthesis of copper–graphene nanocomposite foils with high hardness. Sci Rep 4:4049–4055

    Article  Google Scholar 

  14. Zhang F, Hou C, Zhang Q, Wang H, Li Y (2012) Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation. Mater Chem Phys 135(2–3):826–831

    Article  Google Scholar 

  15. Kwon H, Mondal J, AlOgab KA, Sammelselg V, Takamichi M (2017) Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J Alloys Compd 698:807–813

    Article  Google Scholar 

  16. Liu J, Khan U, Coleman J, Fernandez B, Rodriguez P, Naher S, Brabazon D (2016) Graphene oxide and graphene nanosheet reinforced aluminum matrix composites: powder synthesis and prepared composite characteristics. Mater Des 94:87–94

    Article  Google Scholar 

  17. Monje IE, Louis E, Molina JM (2016) Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant of oscillating temperature in a humid environment. J Mater Sci 51(17):8027–8036. doi:10.1007/s10853-016-0072-8

    Article  Google Scholar 

  18. Zheng J, Li Q, Liu W, Shu G (2016) Microstructure evolution of 15 wt% boron carbide/aluminum composites during liquid-stirring process. J Compos Mater 50(27):3843–3852

    Article  Google Scholar 

  19. Zhang J, Liu S, Lu Y, Yin X, Zhang Y, Li T (2016) Liquid rolling of woven carbon fibers reinforced Al5083-matrix composites. Mater Des 95:89–96

    Article  Google Scholar 

  20. Ceschini L, Dahle A, Gupta M, Jarfors AEW, Jayalakshmi S, Morri A, Rotundo F, Toschi S, Arvind Singh R (2017) Aluminum and magnesium metal matrix nanocomposites. Springer Nature Singapore Pte Ltd., Singapore

    Book  Google Scholar 

  21. Zhang H, Xu C, Xiao W, Ameyama K, Ma C (2016) Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater Sci Eng A 658:8–15

    Article  Google Scholar 

  22. Abdi A, Morsi K (2016) Long-term post-processing disintegration of aluminum–carbon nanotube composites. J Mater Sci 51(4):2049–2056. doi:10.1007/s10853-015-9515-x

    Article  Google Scholar 

  23. Raviathul Basariya M, Srivastava VC, Mukhopadhyay NK (2014) Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater Des 64:542–549

    Article  Google Scholar 

  24. Perez-Bustamante R, Gomez-Esparza CD, Estrada-Guel I, Miki-Yoshida M, Licea-Jimenez L, Perez-Garcia SA, Martinez-Sanchez R (2009) Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater Sci Eng A 502(1–2):159–163

    Article  Google Scholar 

  25. Yolshina LA, Muradymov RV, Korsun IV, Yakovlev GA, Smirnov SV (2016) Novel aluminum–graphene and aluminum–graphite metallic composite materials: synthesis and properties. J Alloys Compd 663:449–459

    Article  Google Scholar 

  26. Isaza C, Sierra G, Meza JM (2016) A novel technique for production of metal matrix composites reinforced with carbon nanotubes. J Manuf Sci Eng 138(2):024501–024505

    Article  Google Scholar 

  27. Zhou W, Yamaguchi T, Kikuchi K, Nomura N, Kawasaki A (2017) Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater 125:369–376

    Article  Google Scholar 

  28. Zhou W, Bang S, Kurita H, Miyazaki T, Fan Y, Kawasaki A (2016) Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon 96:919–928

    Article  Google Scholar 

  29. Choi HJ, Shin JH, Bae DH (2010) Self-assembled network structures in Al/C60 composites. Carbon 48(13):3700–3707

    Article  Google Scholar 

  30. Starink MJ, Cheng X, Yang S (2013) Hardening of pure metals by high-pressure torsion: a physically based model employing volume-averaged defect evolutions. Acta Mater 61:183–192

    Article  Google Scholar 

  31. Ito Y, Edalati K, Horita Z (2017) High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall–Petch relationship. Mater Sci Eng A 679:428–434

    Article  Google Scholar 

  32. Abolhasani A, Zarei-Hanzake A, Abedi HR, Rokni MR (2012) The room temperature mechanical properties of hot rolled 7075 aluminum alloy. Mater Des 34:631–636

    Article  Google Scholar 

  33. Zhou X, Liu Y, Thompson GE, Scamans GM, Skeldon P, Hunter JA (2011) Near-surface deformed layers on rolled aluminum alloys. Metall Mater Trans A 42(5):1373–1385

    Article  Google Scholar 

  34. Abdu MT, Dheda SS, Lavernia EJ (2013) Creep and microstructure in ultrafine-grained 5083 Al. J Mater Sci 48(8):3294–3303. doi:10.1007/s10853-012-7115-6

    Article  Google Scholar 

  35. Choi HJ, Lee SW, Park JS, Bae DH (2008) Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders. Scr Mater 59(10):1123–1126

    Article  Google Scholar 

  36. Shin SE, Bae DH (2015) Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos Part A 98:42–47

    Article  Google Scholar 

  37. Williamson GK, Hall WH (1954) The use of Fourier analysis in the interpretation of X-ray line broadening from cold-worked iron and molybdenum. Acta Crystallogr 1:574–581

    Article  Google Scholar 

  38. Smallman RE, Westmacott KH (1957) Stacking faults in face-centered cubic metals and alloys. Philos Mag 2:669–683

    Article  Google Scholar 

  39. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr Mater 54(2):251–256

    Article  Google Scholar 

  40. Ungar T (2004) Microstructural parameters from X-ray diffraction peak broadening. Scr Mater 51(8):777–781

    Article  Google Scholar 

  41. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminum by molecular-dynamics simulation. Nat Mater 1:45–49

    Article  Google Scholar 

  42. Bethune DS, Meijer G, Tang WC, Rosen HJ, Golden WG, Seki H, Brown CA, de Vries MS (1991) Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. Chem Phys Lett 179(1–2):181–186

    Article  Google Scholar 

  43. Qiao L, Sun X, Yang Z, Wang X, Wang Q, He D (2013) Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries. Carbon 54:29–35

    Article  Google Scholar 

  44. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41

    Article  Google Scholar 

  45. Woo DJ, Bottolfson BA, Brewer LM, Hooper JP, Osswald S (2014) Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling. J Mater Res 29(22):2644–2656

    Article  Google Scholar 

  46. Liu X, Liu Y, Ran X, An J, Cao Z (2006) Fabrication of the supersaturated solid solution of carbon in copper by mechanical alloying. Mater Charact 58(6):504–508

    Article  Google Scholar 

  47. Uglova VV, Cherendaa NN, Danilyukb AL, Rauschenbachc B (2000) Structural and phases composition changes in aluminum induced by carbon implantation. Surf Coat Technol 128–129:358–363

    Article  Google Scholar 

  48. Muche DNF, Drazin JW, Mardinly J, Dey S, Castro RHR (2017) Colossal grain boundary strengthening in ultrafine nanocrystalline oxides. Mater Lett 186:298–300

    Article  Google Scholar 

  49. Courtney TH (2005) Mechanical behavior of materials, 2nd edn. Waveland Press Inc., Long grove

    Google Scholar 

  50. Khan AS, Farrokh B, Takacs L (2008) Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater Sci Eng A 489(1–2):77–84

    Article  Google Scholar 

  51. Tabor D (1951) Hardness of metals. Clarendon Press, Oxford

    Google Scholar 

  52. Tokunaga T, Kaneko K, Horita Z (2008) Production of aluminum-matrix carbon nanotube composite using high pressure torsion. Mater Sci Eng A 490(1–2):300–304

    Article  Google Scholar 

  53. Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminum composites. Compos Sci Technol 70(16):2237–2241

    Article  Google Scholar 

  54. Choi HJ (2013) Mechanical behavior of Al/C60-fullerenes nanocomposites. Compos Res 26:111–115

    Article  Google Scholar 

  55. Bagherpour E, Reihanian M, Miyamoto H (2017) Tailoring particle distribution non-uniformity and grain refinement in nanostructured metal matrix composites fabricated by severe plastic deformation (SPD): a correlation with flow stress. J Mater Sci 52(6):3436–3446. doi:10.1007/s10853-016-0632-y

    Article  Google Scholar 

  56. Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater 55(15):5115–5121

    Article  Google Scholar 

  57. Suguihiro NM, Xing YT, Haeussler D, Jaeger W, Smith DJ, Baggio-Saitovitch E, Solorzano IG (2014) Discontinuous reactions in melt-spun Cu–10 at. % Co alloys and their effect on magnetic anisotropy. J Mater Sci 49:6167–6179. doi:10.1007/s10853-014-8329-6

    Article  Google Scholar 

  58. Li SH, Chao CG (2004) Effect of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites. Metall Mater Trans A 35(7):2153–2160

    Article  Google Scholar 

  59. George R, Kashyap KT, Rahul R, Yamdagni S (2005) Strengthening in carbon nanotube/aluminum (CNT/Al). Scr Mater 53(10):1159–1163

    Article  Google Scholar 

  60. Mehrer H (2007) Diffusion in solids: fundamentals, methods, diffusion-controlled processes. Springer, Berlin

    Book  Google Scholar 

  61. Tapasa K, Osetsky YN, Bacon DJ (2007) Computer simulation of interaction of an edge dislocation with a carbon interstitial in α-iron and effects on glide. Acta Mater 55(1):93–104

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (2009-0093814 and NRF-2015R1D1A1A01060718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjoo Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, A., Um, H.Y., Kim, D. et al. Influence of high-pressure torsion and hot rolling on the microstructure and mechanical properties of aluminum–fullerene composites. J Mater Sci 52, 11988–12000 (2017). https://doi.org/10.1007/s10853-017-1230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1230-3

Keywords

Navigation