Skip to main content
Log in

Tailoring particle distribution non-uniformity and grain refinement in nanostructured metal matrix composites fabricated by severe plastic deformation (SPD): a correlation with flow stress

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of particle distribution non-uniformity on the microstructure and flow stress in nanostructured metal matrix composites produced by severe plastic deformation was investigated. The Al/SiC composite fabricated by accumulative roll bonding was considered as a case. Transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) were used for microstructural characterizations. Based on the particle distribution, three different zones were considered: particle-free zone, single particle zone, and cluster zone. In comparison to the particle free zone, finer grain sizes with higher boundary misorientation angle were observed in the single particle zone. The lowest grain size (342/260 nm by TEM/STEM) was obtained in the cluster zone approximately between two near particles. The selected area diffraction showed the highest misorientation angle at these regions. A combined microstructure strengthening analysis was considered for the prediction of the flow stress. The flow stress is predicted based on the grain sizes at various microstructural zones, and the results were compared with the experimental yield stress of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39(1):1–23. doi:10.1179/imr.1994.39.1.1

    Article  Google Scholar 

  2. Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156. doi:10.1007/bf00544448

    Article  Google Scholar 

  3. Xu W, Ma H, Ji S, Chen H (2016) Analytical effective elastic properties of particulate composites with soft interfaces around anisotropic particles. Compos Sci Technol 129:10–18. doi:10.1016/j.compscitech.2016.04.011

    Article  Google Scholar 

  4. Sun CJ, Saffari P, Sadeghipour K, Baran G (2005) Effects of particle arrangement on stress concentrations in composites. Mater Sci Eng 405(1–2):287–295. doi:10.1016/j.msea.2005.06.032

    Article  Google Scholar 

  5. Ekici R, Kemal Apalak M, Yıldırım M, Nair F (2010) Effects of random particle dispersion and size on the indentation behavior of SiC particle reinforced metal matrix composites. Mater Des 31(6):2818–2833. doi:10.1016/j.matdes.2010.01.001

    Article  Google Scholar 

  6. Bie BX, Huang JY, Su B, Lu L, Fan D, JC E, Sun T, Fezzaa K, Qi ML, Luo SN (2016) Dynamic tensile deformation and damage of B4C-reinforced Al composites: time-resolved imaging with synchrotron x-rays. Mater Sci Eng 664:86–93. doi:10.1016/j.msea.2016.03.124

    Article  Google Scholar 

  7. Sabirov I, Kolednik O (2005) The effect of inclusion size on the local conditions for void nucleation near a crack tip in a mild steel. Scr Mater 53(12):1373–1378. doi:10.1016/j.scriptamat.2005.08.027

    Article  Google Scholar 

  8. Sabirov I, Duschlbauer D, Pettermann HE, Kolednik O (2005) The determination of the local conditions for void initiation in front of a crack tip for materials with second-phase particles. Mater Sci Eng 393(1–2):275–285. doi:10.1016/j.msea.2004.10.013

    Article  Google Scholar 

  9. Heinrich H, Vananti A, Kostorz G (2001) Strain fields at interfaces of Al-based metal matrix composites. Mater Sci Eng 319–321:434–438. doi:10.1016/S0921-5093(01)00955-8

    Article  Google Scholar 

  10. Douin J, Donnadieu P, Houdellier F (2010) Elastic strain around needle-shaped particles embedded in Al matrix. Acta Mater 58(17):5782–5788. doi:10.1016/j.actamat.2010.06.053

    Article  Google Scholar 

  11. Yuan MN, Yang YQ, Li C, Heng PY, Li LZ (2012) Numerical analysis of the stress–strain distributions in the particle reinforced metal matrix composite SiC/6064Al. Mater Des 38:1–6. doi:10.1016/j.matdes.2011.12.043

    Article  Google Scholar 

  12. Chawla N, Chawla KK (2006) Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. J Mater Sci 41(3):913–925. doi:10.1007/s10853-006-6572-1

    Article  Google Scholar 

  13. Sabirov I, Kolednik O, Valiev RZ, Pippan R (2005) Equal channel angular pressing of metal matrix composites: effect on particle distribution and fracture toughness. Acta Mater 53(18):4919–4930. doi:10.1016/j.actamat.2005.07.010

    Article  Google Scholar 

  14. Wu X, Xia K (2007) Back pressure equal channel angular consolidation—application in producing aluminium matrix composites with fine flyash particles. J Mater Process Technol 192–193:355–359. doi:10.1016/j.jmatprotec.2007.04.007

    Article  Google Scholar 

  15. Sabbaghianrad S, Langdon TG (2016) Developing superplasticity in an aluminum matrix composite processed by high-pressure torsion. Mater Sci Eng 655:36–43. doi:10.1016/j.msea.2015.12.078

    Article  Google Scholar 

  16. Alhajeri SN, Al-Fadhalah KJ, Almazrouee AI, Langdon TG (2016) Microstructure and microhardness of an Al-6061 metal matrix composite processed by high-pressure torsion. Mater Charact 118:270–278. doi:10.1016/j.matchar.2016.06.003

    Article  Google Scholar 

  17. Reihanian M, Jalili Shahmansouri M, Khorasanian M (2015) High strength Al with uniformly distributed Al2O3 fragments fabricated by accumulative roll bonding and plasma electrolytic oxidation. Mater Sci Eng 640:195–199. doi:10.1016/j.msea.2015.05.104

    Article  Google Scholar 

  18. Reihanian M, Hadadian FK, Paydar MH (2014) Fabrication of Al–2 vol% Al2O3/SiC hybrid composite via accumulative roll bonding (ARB): an investigation of the microstructure and mechanical properties. Mater Sci Eng 607:188–196. doi:10.1016/j.msea.2014.04.013

    Article  Google Scholar 

  19. Daneshvar F, Reihanian M, Gheisari K (2016) Al-based magnetic composites produced by accumulative roll bonding (ARB). Mater Sci Eng 206:45–54. doi:10.1016/j.mseb.2016.01.003

    Article  Google Scholar 

  20. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189. doi:10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  21. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556. doi:10.1016/j.pmatsci.2005.08.003

    Article  Google Scholar 

  22. Schmidt CW, Knieke C, Maier V, Höppel HW, Peukert W, Göken M (2011) Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement. Scr Mater 64(3):245–248. doi:10.1016/j.scriptamat.2010.10.013

    Article  Google Scholar 

  23. Jamaati R, Toroghinejad MR (2010) Application of ARB process for manufacturing high-strength, finely dispersed and highly uniform Cu/Al2O3 composite. Mater Sci Eng 527(27–28):7430–7435. doi:10.1016/j.msea.2010.08.038

    Article  Google Scholar 

  24. Yazdani A, Salahinejad E (2011) Evolution of reinforcement distribution in Al–B4C composites during accumulative roll bonding. Mater Des 32(6):3137–3142. doi:10.1016/j.matdes.2011.02.063

    Article  Google Scholar 

  25. Rezayat M, Akbarzadeh A, Owhadi A (2012) Fabrication of high-strength Al/SiC p nanocomposite sheets by accumulative roll bonding. Metall Mater Trans A 43(6):2085–2093. doi:10.1007/s11661-011-1039-7

    Article  Google Scholar 

  26. Jamaati R, Toroghinejad MR, Edris H (2014) Effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding process. Mater Des 54:168–173. doi:10.1016/j.matdes.2013.08.033

    Article  Google Scholar 

  27. Alizadeh M (2010) Comparison of nanostructured Al/B4C composite produced by ARB and Al/B4C composite produced by RRB process. Mater Sci Eng 528(2):578–582. doi:10.1016/j.msea.2010.08.093

    Article  Google Scholar 

  28. Alizadeh M, Paydar MH, Terada D, Tsuji N (2012) Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process. Mater Sci Eng 540:13–23. doi:10.1016/j.msea.2011.12.026

    Article  Google Scholar 

  29. Alizadeh M, Paydar MH (2010) Fabrication of nanostructure Al/SiCP composite by accumulative roll-bonding (ARB) process. J Alloy Compd 492(1–2):231–235. doi:10.1016/j.jallcom.2009.12.026

    Article  Google Scholar 

  30. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater 47(2):579–583. doi:10.1016/S1359-6454(98)00365-6

    Article  Google Scholar 

  31. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr Mater 39(9):1221–1227. doi:10.1016/S1359-6462(98)00302-9

    Article  Google Scholar 

  32. Reihanian M, Bagherpour E, Paydar MH (2013) On the achievement of uniform particle distribution in metal matrix composites fabricated by accumulative roll bonding. Mater Lett 91:59–62. doi:10.1016/j.matlet.2012.09.043

    Article  Google Scholar 

  33. Courtney TH (2000) Mechanical behavior of materials. McGraw Hill, Boston, pp 212–218

    Google Scholar 

  34. Nardone VC, Prewo KM (1986) On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr Metall 20(1):43–48. doi:10.1016/0036-9748(86)90210-3

    Article  Google Scholar 

  35. Sekine H, Chent R (1995) A combined microstructure strengthening analysis of SiCp/Al metal matrix composites. Composites 26(3):183–188. doi:10.1016/0010-4361(95)91381-E

    Article  Google Scholar 

  36. Arsenault RJ, Shi N (1986) Proceedings of the international conference on low energy dislocation structures dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng 81:175–187. doi:10.1016/0025-5416(86)90261-2

    Article  Google Scholar 

  37. Hansen N (2004) Hall–Petch relation and boundary strengthening. Scr Mater 51(8):801–806. doi:10.1016/j.scriptamat.2004.06.002

    Article  Google Scholar 

  38. Ashby MF (1966) Work hardening of dispersion-hardened crystals. Philos Mag 14(132):1157–1178. doi:10.1080/14786436608224282

    Article  Google Scholar 

  39. Fleck NA, Ashby MF, Hutchinson JW (2003) The role of geometrically necessary dislocations in giving material strengthening. Scr Mater 48(2):179–183. doi:10.1016/S1359-6462(02)00338-X

    Article  Google Scholar 

  40. Ferguson JB, Lopez H, Kongshaug D, Schultz B, Rohatgi P (2012) Revised Orowan strengthening: effective interparticle spacing and strain field considerations. Metall Mater Trans A 43(6):2110–2115. doi:10.1007/s11661-011-1029-9

    Article  Google Scholar 

  41. Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater 54(7):1321–1326. doi:10.1016/j.scriptamat.2005.12.017

    Article  Google Scholar 

  42. Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorf D (1992) Overview no. 96 evolution of f.c.c. deformation structures in polyslip. Acta Metall Mater 40(2):205–219. doi:10.1016/0956-7151(92)90296-Q

    Article  Google Scholar 

  43. Hughes DA, Hansen N (1997) High angle boundaries formed by grain subdivision mechanisms. Acta Mater 45(9):3871–3886. doi:10.1016/S1359-6454(97)00027-X

    Article  Google Scholar 

  44. Kuhlmann-Wilsdorf D, Hansen N (1991) Geometrically necessary, incidental and subgrain boundaries. Scr Metall Mater 25(7):1557–1562. doi:10.1016/0956-716X(91)90451-6

    Article  Google Scholar 

Download references

Acknowledgements

Financial support provided by Shahid Chamran University of Ahvaz (Grant No. 94-3-02-31579) is gratefully acknowledged. Also, E. Bagherpour acknowledges the financial support of the Metallic Materials Science Laboratory of Doshisha University for the application of electron microscopes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reihanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagherpour, E., Reihanian, M. & Miyamoto, H. Tailoring particle distribution non-uniformity and grain refinement in nanostructured metal matrix composites fabricated by severe plastic deformation (SPD): a correlation with flow stress. J Mater Sci 52, 3436–3446 (2017). https://doi.org/10.1007/s10853-016-0632-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0632-y

Keywords

Navigation