Skip to main content
Log in

Microcrystalline cellulose property–structure effects in high-pressure fluidization: microfibril characteristics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The raw material properties and characteristics of four different microfibrillated celluloses (MFCs) produced by microfluidizing were investigated. The cellulose materials were never-dried and dried microcrystalline cellulose (MCC), a commercial MCC, and an enzymatic-mechanically treated softwood sulfite pulp. The study comprises extensive initial and final physical, structural, and molecular-level analyses. The results indicated that raw material properties related to both fibril aggregation, structural compaction levels and geometric heterogeneity and interaction levels essentially affected both the process and the final MFC properties. The increase in specific surface area (SSA) was minor for the enzymatic-mechanically treated raw material, while MCC showed a larger increase of several orders of magnitude in SSA. The drying of particulate MCC was reflected both in improved fibrillation efficiency and in the final MFC properties, primarily observed as enhanced SSA, in fibril dimensions and in gel strength. The feed consistency (7.5 %) applicable with dried, particulate MCC in fluidization was more than any of those hitherto reported. The study indicated that MCC can facilitate energy-efficient MFC production with the application of fluidization technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294

    Article  Google Scholar 

  2. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    Article  Google Scholar 

  3. Qing Y, Sabo R, Zhy JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234

    Article  Google Scholar 

  4. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  Google Scholar 

  5. Ahola S, Salmi J, Johansson L-S, Laine J, Österberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282

    Article  Google Scholar 

  6. Charani PR, Dehghani Dehghani-Firouzabadi M, Afra E, Blademo Å, Naderi A, Lindström T (2013) Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch Pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose 20:2559–2567

    Article  Google Scholar 

  7. Wichmann J-U, Øivind H (2008) Method for producing microfibrillated cellulose. European patent application EP 2196579A1, 9 Dec 2008, 708

  8. Dufresne A, Cavaillé J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  Google Scholar 

  9. Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  Google Scholar 

  10. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 37:797–813

    Google Scholar 

  11. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties uses, and commercial potential. J Appl Polym Sci 37:815–827

    Google Scholar 

  12. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  Google Scholar 

  13. Gullichsen J (1999) Principles of wood chip delignification. In: Gullichsen J, Fogelholm CJ (eds) Chemical pulping 6a, 1st edn. Fapet, Helsinki, pp 19–104

    Google Scholar 

  14. Ankerfors M (2012) Microfibrillated cellulose: energy-efficient preparation techniques and key properties. Licentiate thesis, KTH Royal Institute of Technology, pp 1–49

  15. Lundin T (2008) Tailoring pulp fiber properties in low consistency refining. DSc dissertation, Åbo Akademi University, pp 1–259

  16. Charani PR, Dehghani-Firouzabadi, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740

    Article  Google Scholar 

  17. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Linström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  18. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  Google Scholar 

  19. Pääkkönen T, Vuorinen T, Nuopponen M (2011) Method for catalytic oxidation of cellulose and method for making a cellulose product. International patent application WO 2012168562A1, pp 1–55, 9 Jun 2011

  20. Wågberg L, Decher G, Norgren M, Linström T, Ankerfors M, Axnäs K (2008) The build-Up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

  21. Siro I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660

    Article  Google Scholar 

  22. Paltakari J, Laine J, Österberg M, Ramjee S, Teirfolk J-E (2009) A method for producing modified cellulose. International patent application WO 2010092239A1, 1–36, 13 Feb 2009

  23. Ankerfors M, Lindström T (2009) Method for providing a nanocellulose involving modified cellulose fibers. International patent application WO 2009126106A1, pp 1–27, 10 Apr 2008

  24. Beghello L (1998) Some factors that influence fibre flocculation. Nord Pulp Paper Res J 13:274–279

    Article  Google Scholar 

  25. Derakhshandeh B, Kerekes RJ, Hatzikiriakos SG, Bennington CPJ (2011) Rheology of pulp fibre suspensions: a critical review. Chem Eng Sci 66:3460–3470

    Article  Google Scholar 

  26. Gullichsen J, Harkonen E (1981) Medium consistency technology. Tappi J 64:69–72

    Google Scholar 

  27. Kerekes RJ, Soszynski RM, Doo PAT (1985) The flocculation of pulp fibres. Proceedings of the 8th fundamental research symposium. Mechanical Engineering Publications, Oxford, pp 265–310

    Google Scholar 

  28. Tuason DC, Krawczyk GR, Buliga G (2009) Microcrystalline cellulose. In: Imeson A (ed) Food stabilisers, thickeners and gelling agents, 1st edn. Wiley, Oxford, pp 218–236

    Chapter  Google Scholar 

  29. Battista OA (1975) Colloidal microcrystalline celluloses. In: Turbak AF (ed) Cellulose technology research, vol 10. ACS Symposium Series, Washington, pp 1–8

    Chapter  Google Scholar 

  30. Yokota H, Okumura Y (1984) Homogenization of microcrystalline cellulose suspension. Japan patent JP 59120638, pp 1–5, 12 Jul 1984

  31. Kleinebudde P (2000) Influence of degree of polymerization on behavior of cellulose during homogenization and extrusion/spheronization. AAPS PharmSci 2:1–10

    Article  Google Scholar 

  32. Jacquet N, Vanderghem C, Danthine S, Blecker C, Paquet M (2012) Influence of homogenization treatment on physicochemical properties and enzymatic hydrolysis rate of pure cellulose fibers. Appl Biochem Biotech 169:1315–1328

    Article  Google Scholar 

  33. Lee S-Y, Chun S-J, Kang I-A, Park J-Y (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55

    Article  Google Scholar 

  34. Diniz FJMB, Gil MH, Castro JAAM (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494

    Article  Google Scholar 

  35. Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52

    Article  Google Scholar 

  36. Dahl O, Vanhatalo K, Parviainen K (2011) A novel method to produce microcellulose. International patent application WO 2011154600, pp 1–27, 7 Jun 2011

  37. Vanhatalo K, Dahl O (2014) Effect of mild acid hydrolysis parameters on properties of microcrystalline cellulose. Bioresources 9:4729–4740

    Google Scholar 

  38. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  Google Scholar 

  39. Marx-Figini M (1978) Significance of the intrinsic viscosity ratio of unsubstituted and nitrated cellulose in different solvents. Angew Makromol Chem 72:161–171

    Article  Google Scholar 

  40. Gruber E, Gruber R (1981) Viskosimetrische bestimmung des polymerisationsgrades von cellulose. Das Papier 35:133–141

    Google Scholar 

  41. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  Google Scholar 

  42. Krässig HA (1993) Methods of fiber structure characterization chapter 3. In: Huglin MB (ed) Cellulose: structure, accessibility and reactivity, polymer monographs, vol 11. Gordon and Breach Science Publishers, Philadelphia, pp 43–149

    Google Scholar 

  43. Testova L, Borrega M, Tolonen LK, Penttilä PP, Serimaa R, Larsson PT, Sixta H (2014) Dissolving-grade birch pulps produced under various prehydrolysis intensities: quality, structure and applications. Cellulose 21:2007–2021

    Article  Google Scholar 

  44. Kangas H, Lahtinen P, Sneck A, Saariaho A-M, Laitinen O, Hellén E (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nord Pulp Pap Res J 29:129–143

    Article  Google Scholar 

  45. Park S, Venditti RA, Jameel H, Pawlak JJ (2005) Measurement of fiber hornification using high resolution thermogravimetric analysis. In: Proceedings of the TAPPI engineering pulping and environmental conference, TAPPI Press, Philadelphia, pp 30–35, August 28–31

  46. Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53

    Article  Google Scholar 

  47. Fan LT, Gharpuray MM, Lee YH (1987) Nature of cellulosic material. In: Aiba S, Fan LT, Fiechter A, Klein J, Schügerl K (eds) Cellulose hydrolysis. Springer, Berlin, pp 5–19

    Chapter  Google Scholar 

  48. Sirviö T (2008) Fibres and bonds. In: Niskanen K (ed) Paper physics 16, 2nd edn. Fapet, Helsinki, pp 59–92

    Google Scholar 

  49. Microfluidized Corporation (2015) Microfluidizer® processor used guide—innovation through microfluidizer™ processor technology, pp 1–10

  50. Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Ind Eng Chem 48:333–335

    Article  Google Scholar 

  51. Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110

    Article  Google Scholar 

  52. Eronen P, Österberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290

    Article  Google Scholar 

  53. Pöhler T, Lappalainen T, Tammelin T, Eronen P, Hiekkataipale P, Vehniäinen A, Koskinen TM (2010) Influence of fibrillation method on the character of nanofibrillated cellulose (NFC). TAPPI International conference on nanotechnology for the forest product industry. Dipoli Congress Centre, Espoo, pp 27–29

    Google Scholar 

  54. Li Q, Renneckar S (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose 16:1025–1032

    Article  Google Scholar 

  55. Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  Google Scholar 

  56. Zografi G, Kontny MJ, Yang AYS, Brenner GS (1984) Surf ace area and water vapor sorption of microcrystalline cellulose. Int J Pharm 18:117–125

    Article  Google Scholar 

  57. Steele DF, Moreton RC, Staniforth JN, Young PM, Tobyn MJ, Edge S (2008) Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography. AAPS J 10:494–503

    Article  Google Scholar 

  58. Luukkonen P, Schaefer T, Hellen L, Juppo AM, Ylikruusi J (1999) Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int J Phar 188:181–192

    Article  Google Scholar 

  59. Page DH, Barbe MC, Seth RS, Jordan BD (1983) Mechanism of curl creation, removal and retention in pulp fibers. In: Proceedings of the TAPPl international mechanical pulping conference, Washington DC, pp 271–275

  60. Hartler N (1995) Aspects on curled and microcompressed fibers. Nord Pulp Paper Res J 10:4–7

    Article  Google Scholar 

  61. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  62. Vable M (2002) Mechanical Properties of Materials. In: Vable M (ed) Mechanics of materials. Oxford University Press, Oxford

    Google Scholar 

  63. Karato SI (2009) Theory of lattice strain in a material undergoing plastic deformation: basic formulation and applications to a cubic crystal. Phys Rev B 79:214106

    Article  Google Scholar 

  64. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  Google Scholar 

  65. Kontturi E, Vuorinen T (2009) Indirect evidence of supramolecular changes within cellulose microfibrils of chemical pulp fibers upon drying. Cellulose 16:65–74

    Article  Google Scholar 

  66. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466

    Article  Google Scholar 

  67. Alila S, Besbes I, Vilar MR, Mutje P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259

    Article  Google Scholar 

  68. Liimatainen H, Sirviö J, Haapala A, Hormi O, Niinimäki J (2011) Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydr Polym 83:2005–2010

    Article  Google Scholar 

  69. Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353

    Article  Google Scholar 

  70. Csiszár E, Fekete E, Tóth A, Bandi E, Koczkac B, Sajó I (2013) Effect of particle size on the surface properties and morphology of ground flax. Carbohydr Polym 94:927–933

    Article  Google Scholar 

  71. Zhang L, Tsuzuki T, Wanf X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22:1729–1741

    Article  Google Scholar 

  72. Wang QQ, Zhy JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643

    Article  Google Scholar 

  73. Battista AO (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507

    Article  Google Scholar 

  74. Sen SK, Baheti VK, Venditti RA, Pawlak JJ, Park S, Bansal MC (2012) Cellulose microfibril–water interaction as characterized by isothermal thermogravimetric analysis and scanning electron microscopy. Bioresources 7:4683–4703

    Google Scholar 

  75. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  Google Scholar 

  76. Deinert MR, Dathe A, Parlange J-Y, Cady KB (2008) Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions. Phys Rev B 77:021203

    Article  Google Scholar 

  77. Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  Google Scholar 

  78. Nair SS, Zhou JY, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanopart Res 16:2348–2349

    Article  Google Scholar 

  79. Thanomchat S, Srikulkit K, Suksut B, Schlarb AK (2014) Morphology and crystallization of polypropylene/microfibrillated cellulose composites. Int J Appl Sci Technol 7:23–34

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the valuable laboratory assistance provided by Anu Anttila and Timo Hartus (Aalto University), as well as by Tiina Anttila and Tytti Larinoja (Kemira Oyj, R&D and Technology). Gratitude is also expressed for the general contribution and ideas of Veli-Matti Vuorenpalo (Kemira Oyj R&D and Technology) as well as the Rheocompass software support provided by Antti Kalanti (Anton Paar Nordic AB). Finally, the raw material provided by Domsjö Pulp Mill of the Aditya Birla Group, and the financial support by the Finnish National Technology Agency (Tekes) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Vanhatalo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanhatalo, K., Lundin, T., Koskimäki, A. et al. Microcrystalline cellulose property–structure effects in high-pressure fluidization: microfibril characteristics. J Mater Sci 51, 6019–6034 (2016). https://doi.org/10.1007/s10853-016-9907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9907-6

Keywords

Navigation