Skip to main content
Log in

A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnesium, the lightest structural metal, is approximately four times lighter than steel—the most widely used metal in industrial applications. Currently available Mg alloys, however, are impractically expensive for use in automotive structural components, as severe ductility problems require forming operations at elevated temperatures and an exclusion from critical safety components. With a strong impetus in research having sprung up during the last two decades, addition of rare-earth elements in small quantities emerged as a potential solution for simultaneously delivering the ductility and weight requirements for automotive applications. These improvements are arguably achieved by virtue of texture weakening and enhancement of non-basal slip. However, ways by which rare-earth elements modify texture remain very elusive, and no consensus on the driving mechanisms has been reached in the literature as of yet. We take a look back at different paradigms held for the action of rare-earth additions, and examine key facts that may reconcile controversies. We attempt to identify critical gaps and suggest venues to overcome them. These gaps, once filled, may promote Mg alloys to become a stronghold for lightweighting, which will exceptionally benefit our environment and wellbeing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure  1
Figure  2
Figure  3
Figure  4
Figure  5
Figure  6
Figure  7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure  16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

References

  1. Mordike B, Ebert T (2001) Magnesium: properties—applications—potential. Mater Sci Eng 302(1):37–45

    Article  Google Scholar 

  2. Hirsch J, Al-Samman T (2013) Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater 61(3):818–843. doi:10.1016/j.actamat.2012.10.044

    Article  Google Scholar 

  3. Dharmendra C, Rao KP, Prasad YVRK, Hort N, Kainer KU (2013) Hot workability analysis with processing map and texture characteristics of as-cast TX32 magnesium alloy. J Mater Sci 48(15):5236–5246. doi:10.1007/s10853-013-7314-9

    Article  Google Scholar 

  4. Guo L, Fujita F (2012) Effect of equivalent strain and redundant shear strain on microstructure and texture evolution during hot rolling in Mg–3Al–1Zn alloys. J Mater Sci 47(17):6213–6219. doi:10.1007/s10853-012-6522-z

    Article  Google Scholar 

  5. Huang X, Suzuki K, Chino Y, Mabuchi M (2012) Influence of rolling temperature on static recrystallization behavior of AZ31 magnesium alloy. J Mater Sci 47(11):4561–4567. doi:10.1007/s10853-012-6314-5

    Article  Google Scholar 

  6. Huang Y, Figueiredo RB, Baudin T, Helbert A-L, Brisset F, Langdon TG (2012) Effect of temperature on the processing of a magnesium alloy by high-pressure torsion. J Mater Sci 47(22):7796–7806. doi:10.1007/s10853-012-6578-9

    Article  Google Scholar 

  7. Kubota K, Mabuchi M, Higashi K (1999) Review processing and mechanical properties of fine-grained magnesium alloys. J Mater Sci 34(10):2255–2262. doi:10.1023/A:1004561205627

    Article  Google Scholar 

  8. Barnett MR (2007) Twinning and the ductility of magnesium alloys. Mater Sci Eng 464(1–2):8–16. doi:10.1016/j.msea.2007.02.109

    Article  Google Scholar 

  9. Barnett MR (2007) Twinning and the ductility of magnesium alloys. Mater Sci Eng 464(1–2):1–7. doi:10.1016/j.msea.2006.12.037

    Article  Google Scholar 

  10. Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K (2003) The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater 51(7):2055–2065. doi:10.1016/s1359-6454(03)00005-3

    Article  Google Scholar 

  11. Aghion E, Bronfin B, Eliezer D (2001) The role of the magnesium industry in protecting the environment. J Mater Process Technol 117(3):381–385

    Article  Google Scholar 

  12. Kulekci MK (2007) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9–10):851–865. doi:10.1007/s00170-007-1279-2

    Google Scholar 

  13. Yamashita A, Horita Z, Langdon TG (2001) Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci Eng 300(1):142–147

    Article  Google Scholar 

  14. Yan H, Chen R, Zheng N, Luo J, Kamado S, Han E (2013) Effects of trace Gd concentration on texture and mechanical properties of hot-rolled Mg–2Zn–xGd sheets. J Magnesium Alloys 1(1):23–30. doi:10.1016/j.jma.2013.02.003

    Article  Google Scholar 

  15. Yi S, Bohlen J, Heinemann F, Letzig D (2010) Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets. Acta Mater 58(2):592–605. doi:10.1016/j.actamat.2009.09.038

    Article  Google Scholar 

  16. Huo Q, Yang X, Ma J, Sun H, Wang J, Zhang L (2012) Texture weakening of AZ31 magnesium alloy sheet obtained by a combination of bidirectional cyclic bending at low temperature and static recrystallization. J Mater Sci 48(2):913–919. doi:10.1007/s10853-012-6814-3

    Article  Google Scholar 

  17. Janeček M, Yi S, Král R, Vrátná J, Kainer KU (2010) Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP. J Mater Sci 45(17):4665–4671. doi:10.1007/s10853-010-4675-1

    Article  Google Scholar 

  18. Kabir ASH, Sanjari M, Su J, Jung I-H, Yue S (2015) Effect of annealing on microstructure and texture evolution of uniaxial hot compressed Mg–Al–Sn alloys. J Mater Sci 51(3):1600–1609. doi:10.1007/s10853-015-9483-1

    Article  Google Scholar 

  19. Kang F, Li Z, Wang JT, Cheng P, Wu HY (2012) The activation of 〈c + a〉 non-basal slip in Magnesium alloys. J Mater Sci 47(22):7854–7859. doi:10.1007/s10853-012-6344-z

    Article  Google Scholar 

  20. Lee M-G, Wagoner R, Lee J, Chung K, Kim H (2008) Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets. Int J Plast 24(4):545–582

    Article  Google Scholar 

  21. Wang H, Raeisinia B, Wu P, Agnew S, Tomé C (2010) Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet. Int J Solids Struct 47(21):2905–2917

    Article  Google Scholar 

  22. Pérez P, Garcés G, Adeva P (2007) Influence of texture on the mechanical properties of commercially pure magnesium prepared by powder metallurgy. J Mater Sci 42(11):3969–3976. doi:10.1007/s10853-006-1301-3

    Article  Google Scholar 

  23. Zhu S-Q, Yan H-G, Xia W-J, Liu J-Z, Jiang J-F (2009) Influence of different deformation processing on the AZ31 magnesium alloy sheets. J Mater Sci 44(14):3800–3806. doi:10.1007/s10853-009-3513-9

    Article  Google Scholar 

  24. Ulacia I, Dudamell NV, Gálvez F, Yi S, Pérez-Prado MT, Hurtado I (2010) Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Mater 58(8):2988–2998. doi:10.1016/j.actamat.2010.01.029

    Article  Google Scholar 

  25. Li X, Yang P, Wang LN, Meng L, Cui F (2009) Orientational analysis of static recrystallization at compression twins in a magnesium alloy AZ31. Mater Sci Eng 517(1–2):160–169. doi:10.1016/j.msea.2009.03.045

    Article  Google Scholar 

  26. Jäger A, Lukáč P, Gärtnerová V, Haloda J, Dopita M (2006) Influence of annealing on the microstructure of commercial Mg alloy AZ31 after mechanical forming. Mater Sci Eng 432(1):20–25

    Article  Google Scholar 

  27. Li H, Hsu E, Szpunar J, Utsunomiya H, Sakai T (2008) Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets. J Mater Sci 43(22):7148–7156. doi:10.1007/s10853-008-3021-3

    Article  Google Scholar 

  28. Sanjari M, Kabir ASH, Farzadfar A, Utsunomiya H, Petrov R, Kestens L, Yue S (2013) Promotion of texture weakening in magnesium by alloying and thermomechanical processing. II: rolling speed. J Mater Sci 49(3):1426–1436. doi:10.1007/s10853-013-7827-2

    Article  Google Scholar 

  29. Wang S, Ma R, Yang L, Wang Y, Wang Y (2010) Precipitates effect on microstructure of as-deformed and as-annealed AZ41 magnesium alloys by adding Mn and Ca. J Mater Sci 46(9):3060–3065. doi:10.1007/s10853-010-5184-y

    Article  Google Scholar 

  30. Bonarski BJ, Schafler E, Mingler B, Skrotzki W, Mikulowski B, Zehetbauer MJ (2008) Texture evolution of Mg during high-pressure torsion. J Mater Sci 43(23–24):7513–7518. doi:10.1007/s10853-008-2794-8

    Article  Google Scholar 

  31. Lin H, Huang J, Langdon T (2005) Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater Sci Eng, A 402(1):250–257

    Article  Google Scholar 

  32. Agnew SR, Duygulu Ö (2005) Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int J Plast 21(6):1161–1193. doi:10.1016/j.ijplas.2004.05.018

    Article  Google Scholar 

  33. Barnett MR (2003) Quenched and annealed microstructures of hot worked magnesium AZ31. Mater Trans 44(4):571–577

    Article  Google Scholar 

  34. Perez-Prado M, Ruano O (2002) Texture evolution during annealing of magnesium AZ31 alloy. Scripta Mater 46(2):149–155

    Article  Google Scholar 

  35. Bohlen J, Yi S, Letzig D, Kainer KU (2010) Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Mater Sci Eng, A 527(26):7092–7098. doi:10.1016/j.msea.2010.07.081

    Article  Google Scholar 

  36. Robson JD, Twier AM, Lorimer GW, Rogers P (2011) Effect of extrusion conditions on microstructure, texture, and yield asymmetry in Mg–6Y–7Gd–0.5 wt%Zr alloy. Mater Sci Eng 528(24):7247–7256. doi:10.1016/j.msea.2011.05.075

    Article  Google Scholar 

  37. Li L (2011) Deformation band and texture of a cast Mg–RE alloy under uniaxial hot compression. Mater Sci Eng, A 528(24):7178–7185. doi:10.1016/j.msea.2011.05.058

    Article  Google Scholar 

  38. Farzadfar SA, Sanjari M, Jung IH, Essadiqi E, Yue S (2011) Role of yttrium in the microstructure and texture evolution of Mg. Mater Sci Eng, A 528(22–23):6742–6753. doi:10.1016/j.msea.2011.05.064

    Article  Google Scholar 

  39. Yamasaki M, Hashimoto K, Hagihara K, Kawamura Y (2011) Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy. Acta Mater 59(9):3646–3658. doi:10.1016/j.actamat.2011.02.038

    Article  Google Scholar 

  40. Stanford N, Barnett MR (2008) The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater Sci Eng, A 496(1–2):399–408. doi:10.1016/j.msea.2008.05.045

    Article  Google Scholar 

  41. Al-Samman T, Li X (2011) Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater Sci Eng, A 528(10–11):3809–3822. doi:10.1016/j.msea.2011.01.080

    Article  Google Scholar 

  42. Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR (2007) The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater 55(6):2101–2112. doi:10.1016/j.actamat.2006.11.013

    Article  Google Scholar 

  43. Mackenzie L, Pekguleryuz M (2008) The recrystallization and texture of magnesium–zinc–cerium alloys. Scripta Mater 59(6):665–668. doi:10.1016/j.scriptamat.2008.05.021

    Article  Google Scholar 

  44. Lou X, Li M, Boger R, Agnew S, Wagoner R (2007) Hardening evolution of AZ31B Mg sheet. Int J Plast 23(1):44–86

    Article  Google Scholar 

  45. Al-Samman T (2013) Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization. Mater Sci Eng, A 560:561–566

    Article  Google Scholar 

  46. Li X, Al-Samman T, Gottstein G (2011) Mechanical properties and anisotropy of ME20 magnesium sheet produced by unidirectional and cross rolling. Mater Des 32(8):4385–4393

    Article  Google Scholar 

  47. Li X, Al-Samman T, Mu S, Gottstein G (2011) Texture and microstructure development during hot deformation of ME20 magnesium alloy: experiments and simulations. Mater Sci Eng, A 528(27):7915–7925

    Article  Google Scholar 

  48. Li X, Jiao F, Al-Samman T, Chowdhury SG (2012) Influence of second-phase precipitates on the texture evolution of Mg–Al–Zn alloys during hot deformation. Scripta Mater 66(3):159–162

    Article  Google Scholar 

  49. Yan H, Xu S, Chen R, Kamado S, Honma T, Han E (2011) Twins, shear bands and recrystallization of a Mg–2.0% Zn–0.8% Gd alloy during rolling. Scripta Mater 64(2):141–144

    Article  Google Scholar 

  50. Sandlöbes S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R (2011) On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys. Acta Mater 59(2):429–439. doi:10.1016/j.actamat.2010.08.031

    Article  Google Scholar 

  51. Basu I, Al-Samman T (2014) Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater 67:116–133

    Article  Google Scholar 

  52. Barrett CD, El Kadiri H (2014) The roles of grain boundary dislocations and disclinations in the nucleation of 10 2 twinning. Acta Mater 63:1–15

    Article  Google Scholar 

  53. El Kadiri H, Kapil J, Oppedal A, Hector L, Agnew SR, Cherkaoui M, Vogel S (2013) The effect of twin–twin interactions on the nucleation and propagation of twinning in magnesium. Acta Mater 61(10):3549–3563

    Article  Google Scholar 

  54. Ball E, Prangnell P (1994) Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scr Metall Mater 31(2):111–116

    Article  Google Scholar 

  55. Hadorn JP, Hantzsche K, Yi S, Bohlen J, Letzig D, Wollmershauser JA, Agnew SR (2011) Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys. Metall Mater Trans A 43(4):1347–1362. doi:10.1007/s11661-011-0923-5

    Article  Google Scholar 

  56. Hadorn JP, Mulay RP, Hantzsche K, Yi S, Bohlen J, Letzig D, Agnew SR (2012) Texture Weakening Effects in Ce-Containing Mg Alloys. Metall Mater Trans A 44(3):1566–1576. doi:10.1007/s11661-012-1486-9

    Article  Google Scholar 

  57. Stanford N (2013) The effect of rare earth elements on the behaviour of magnesium-based alloys: part 2–recrystallisation and texture development. Mater Sci Eng, A 565:469–475

    Article  Google Scholar 

  58. Cottam R, Robson J, Lorimer G, Davis B (2008) Dynamic recrystallization of Mg and Mg–Y alloys: crystallographic texture development. Mater Sci Eng, A 485(1–2):375–382. doi:10.1016/j.msea.2007.08.016

    Article  Google Scholar 

  59. Basu I, Pradeep K, Mießen C, Barrales-Mora L, Al-Samman T (2016) The role of atomic scale segregation in designing highly ductile magnesium alloys. Acta Mater 116:77–94

    Article  Google Scholar 

  60. Agnew S, Yoo M, Tome C (2001) Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater 49(20):4277–4289

    Article  Google Scholar 

  61. Lin T (1971) Physical theory of plasticity. Adv Appl Mech 11:255–311

    Article  Google Scholar 

  62. El Kadiri H, Oppedal A (2010) A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J Mech Phys Solids 58(4):613–624

    Article  Google Scholar 

  63. Ma Q, El Kadiri H, Oppedal A, Baird J, Horstemeyer M, Cherkaoui M (2011) Twinning and double twinning upon compression of prismatic textures in an AM30 magnesium alloy. Scripta Mater 64(9):813–816

    Article  Google Scholar 

  64. Ma Q, El Kadiri H, Oppedal A, Baird J, Li B, Horstemeyer M, Vogel S (2012) Twinning effects in a rod-textured AM30 Magnesium alloy. Int J Plast 29:60–76

    Article  Google Scholar 

  65. Oppedal A, El Kadiri H, Tomé C, Kaschner G, Vogel SC, Baird J, Horstemeyer M (2012) Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Int J Plast 30:41–61

    Article  Google Scholar 

  66. Wu Z, Curtin W (2015) The origins of high hardening and low ductility in magnesium. Nature 526(7571):62–67

    Article  Google Scholar 

  67. Luque A, Ghazisaeidi M, Curtin WA (2013) Deformation modes in magnesium (0 0 0 1) and (0111) single crystals: simulations versus experiments. Modell Simul Mater Sci Eng 21(4):045010. doi:10.1088/0965-0393/21/4/045010

    Article  Google Scholar 

  68. Jain A, Agnew S (2007) Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Mater Sci Eng, A 462(1):29–36

    Article  Google Scholar 

  69. Prasad YVRK, Rao KP (2006) Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg–3Al–1Zn alloy plate. Mater Sci Eng, A 432(1–2):170–177. doi:10.1016/j.msea.2006.05.159

    Article  Google Scholar 

  70. Chapuis A, Driver JH (2011) Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater 59(5):1986–1994

    Article  Google Scholar 

  71. Kleiner S, Uggowitzer P (2004) Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater Sci Eng, A 379(1):258–263

    Article  Google Scholar 

  72. Del Valle J, Pérez-Prado MT, Ruano O (2003) Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Mater Sci Eng, A 355(1):68–78

    Article  Google Scholar 

  73. Jin Q, Shim S-Y, Lim S-G (2006) Correlation of microstructural evolution and formation of basal texture in a coarse grained Mg–Al alloy during hot rolling. Scripta Mater 55(9):843–846

    Article  Google Scholar 

  74. Kim S-H, You B-S, Yim CD, Seo Y-M (2005) Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets. Mater Lett 59(29):3876–3880

    Article  Google Scholar 

  75. Mabuchi M, Chino Y, Iwasaki H, Aizawa T, Higashi K (2001) The grain size and texture dependence of tensile properties in extruded Mg–9Al–1Zn. Mater Trans 42(7):1182–1188

    Article  Google Scholar 

  76. Wang Y, Huang J (2007) The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta Mater 55(3):897–905

    Article  Google Scholar 

  77. Xu D, Liu L, Xu Y, Han E (2007) Effect of microstructure and texture on the mechanical properties of the as-extruded Mg–Zn–Y–Zr alloys. Mater Sci Eng 443(1):248–256

    Article  Google Scholar 

  78. Gehrmann R, Frommert MM, Gottstein G (2005) Texture effects on plastic deformation of magnesium. Mater Sci Eng 395(1):338–349

    Article  Google Scholar 

  79. Yang P, Yu Y, Chen L, Mao W (2004) Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31. Scripta Mater 50(8):1163–1168

    Article  Google Scholar 

  80. Jono Y, Yamasaki M, Kawamura Y (2013) Effect of LPSO Phase-stimulated texture evolution on creep resistance of extruded Mg–Zn–Gd Alloys. Mater Trans 54(5):703–712. doi:10.2320/matertrans.MI201218

    Article  Google Scholar 

  81. Galiyev A, Kaibyshev R, Gottstein G (2001) Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater 49(7):1199–1207

    Article  Google Scholar 

  82. Fatemi-Varzaneh SM, Zarei-Hanzaki A, Beladi H (2007) Dynamic recrystallization in AZ31 magnesium alloy. Mater Sci Eng 456(1–2):52–57. doi:10.1016/j.msea.2006.11.095

    Article  Google Scholar 

  83. Sitdikov O, Kaibyshev R (2001) Dynamic Recrystallization in Pure Magnesium. Mater Trans 42(9):1928–1937

    Article  Google Scholar 

  84. Rollett A, Humphreys F, Rohrer GS, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Amsterdam

    Google Scholar 

  85. Barnett M (2003) A Taylor model based description of the proof stress of magnesium AZ31 during hot working. Metall Mater Trans A 34(9):1799–1806

    Article  Google Scholar 

  86. Basu I, Al-Samman T (2015) Twin recrystallization mechanisms in magnesium-rare earth alloys. Acta Mater 96:111–132

    Article  Google Scholar 

  87. Al-Samman T, Molodov KD, Molodov DA, Gottstein G, Suwas S (2012) Softening and dynamic recrystallization in magnesium single crystals during c-axis compression. Acta Mater 60(2):537–545

    Article  Google Scholar 

  88. Molodov KD, Al-Samman T, Molodov DA, Gottstein G (2014) Mechanisms of exceptional ductility of magnesium single crystal during deformation at room temperature: multiple twinning and dynamic recrystallization. Acta Mater 76:314–330

    Article  Google Scholar 

  89. Changizian P, Zarei-Hanzaki A, Abedi HR (2012) On the recrystallization behavior of homogenized AZ81 magnesium alloy: the effect of mechanical twins and γ precipitates. Mater Sci Eng 558:44–51. doi:10.1016/j.msea.2012.07.054

    Article  Google Scholar 

  90. Ion S, Humphreys F, White S (1982) Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall 30(10):1909–1919

    Article  Google Scholar 

  91. Martin É, Jonas JJ (2010) Evolution of microstructure and microtexture during the hot deformation of Mg–3% Al. Acta Mater 58(12):4253–4266

    Article  Google Scholar 

  92. Sheng Z, Shivpuri R (2006) Modeling flow stress of magnesium alloys at elevated temperature. Mater Sci Eng 419(1):202–208

    Article  Google Scholar 

  93. Del Valle J, Pérez-Prado MT, Ruano OA (2005) Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metall Mater Trans A 36(6):1427–1438

    Article  Google Scholar 

  94. Del Valle J, Ruano OA (2008) Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy. Mater Sci Eng 487(1):473–480

    Article  Google Scholar 

  95. Al-Samman T, Gottstein G (2008) Dynamic recrystallization during high temperature deformation of magnesium. Mater Sci Eng 490(1):411–420

    Article  Google Scholar 

  96. Yi SB, Zaefferer S, Brokmeier HG (2006) Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures. Mater Sci Eng 424(1–2):275–281. doi:10.1016/j.msea.2006.03.022

    Article  Google Scholar 

  97. Chino Y, Kado M, Mabuchi M (2008) Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2wt%(0.035at%)Ce. Mater Sci Eng 494(1–2):343–349. doi:10.1016/j.msea.2008.04.059

    Article  Google Scholar 

  98. Barnett M, Nave M, Bettles C (2004) Deformation microstructures and textures of some cold rolled Mg alloys. Mater Sci Eng 386(1):205–211

    Article  Google Scholar 

  99. Dobroň P, Chmelík F, Yi S, Parfenenko K, Letzig D, Bohlen J (2011) Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scripta Mater 65(5):424–427. doi:10.1016/j.scriptamat.2011.05.027

    Article  Google Scholar 

  100. Yapici GG, Karaman I (2009) Common trends in texture evolution of ultra-fine-grained hcp materials during equal channel angular extrusion. Mater Sci Eng 503(1–2):78–81. doi:10.1016/j.msea.2008.01.098

    Article  Google Scholar 

  101. Hantzsche K, Bohlen J, Wendt J, Kainer KU, Yi SB, Letzig D (2010) Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Mater 63(7):725–730. doi:10.1016/j.scriptamat.2009.12.033

    Article  Google Scholar 

  102. Stanford N (2010) Micro-alloying Mg with Y, Ce, Gd and La for texture modification—A comparative study. Mater Sci Eng 527(10–11):2669–2677. doi:10.1016/j.msea.2009.12.036

    Article  Google Scholar 

  103. Hadorn JP, Hantzsche K, Yi S, Bohlen J, Letzig D, Agnew SR (2012) Effects of solute and second-phase particles on the texture of Nd-Containing Mg alloys. Metall Mater Trans A 43(4):1363–1375. doi:10.1007/s11661-011-1018-z

    Article  Google Scholar 

  104. Moreno I, Nandy T, Jones J, Allison J, Pollock T (2001) Microstructural characterization of a die-cast magnesium-rare earth alloy. Scripta Mater 45(12):1423–1429

    Article  Google Scholar 

  105. Hidalgo-Manrique P, Yi SB, Bohlen J, Letzig D, Pérez-Prado MT (2013) Effect of Nd additions on extrusion texture development and on slip activity in a Mg–Mn alloy. Metall Mater Trans A 44(10):4819–4829. doi:10.1007/s11661-013-1823-7

    Article  Google Scholar 

  106. Stanford N, Sha G, Xia J, Ringer S, Barnett M (2011) Solute segregation and texture modification in an extruded magnesium alloy containing gadolinium. Scripta Mater 65(10):919–921

    Article  Google Scholar 

  107. Stanford N, Atwell D, Barnett MR (2010) The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater 58(20):6773–6783. doi:10.1016/j.actamat.2010.09.003

    Article  Google Scholar 

  108. Stanford N, Atwell D, Beer A, Davies C, Barnett MR (2008) Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater 59(7):772–775. doi:10.1016/j.scriptamat.2008.06.008

    Article  Google Scholar 

  109. Avedesian MM, Baker H (1999) ASM specialty handbook: magnesium and magnesium alloys. ASM International, Materials Park

    Google Scholar 

  110. Agnew SR, Capolungo L, Calhoun CA (2015) Connections between the basal I1 “growth” fault and 〈c + a〉 dislocations. Acta Mater 82:255–265. doi:10.1016/j.actamat.2014.07.056

    Article  Google Scholar 

  111. Sandlöbes S, Friák M, Zaefferer S, Dick A, Yi S, Letzig D, Pei Z, Zhu LF, Neugebauer J, Raabe D (2012) The relation between ductility and stacking fault energies in Mg and Mg–Y alloys. Acta Mater 60(6–7):3011–3021. doi:10.1016/j.actamat.2012.02.006

    Article  Google Scholar 

  112. Muzyk M, Pakiela Z, Kurzydlowski K (2012) Generalized stacking fault energy in magnesium alloys: density functional theory calculations. Scripta Mater 66(5):219–222

    Article  Google Scholar 

  113. Jung I-H, Sanjari M, Kim J, Yue S (2015) Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg–RE alloys. Scripta Mater 102:1–6. doi:10.1016/j.scriptamat.2014.12.010

    Article  Google Scholar 

  114. Rokhlin LL (2003) Magnesium alloys containing rare earth metals: structure and properties. Crc Press, Florida

    Google Scholar 

  115. Zhou DW, Peng P, Liu JS (2007) Electronic structure and stability of Mg–Ce intermetallic compounds from first-principles calculations. J Alloys Compd 428(1–2):316–321. doi:10.1016/j.jallcom.2006.03.046

    Article  Google Scholar 

  116. Kang Y-B, Pelton AD, Chartrand P, Spencer P, Fuerst CD (2007) Critical Evaluation and Thermodynamic Optimization of the Binary Systems in the Mg–Ce–Mn–Y System. J Phase Equilib Diffus 28(4):342–354. doi:10.1007/s11669-007-9095-9

    Article  Google Scholar 

  117. Chino Y, Kado M, Mabuchi M (2008) Compressive deformation behavior at room temperature—773 K in Mg–0.2 mass%(0.035 at.%)Ce alloy. Acta Mater 56(3):387–394. doi:10.1016/j.actamat.2007.09.036

    Article  Google Scholar 

  118. Basu I, Al-Samman T, Gottstein G (2013) Shear band-related recrystallization and grain growth in two rolled magnesium-rare earth alloys. Mater Sci Eng 579:50–56. doi:10.1016/j.msea.2013.04.076

    Article  Google Scholar 

  119. Masoumi M, Hoseini M, Pekguleryuz M (2011) The influence of Ce on the microstructure and rolling texture of Mg–1%Mn alloy. Mater Sci Eng 528(7–8):3122–3129. doi:10.1016/j.msea.2010.12.096

    Article  Google Scholar 

  120. Mishra RK, Gupta AK, Rao PR, Sachdev AK, Kumar AM, Luo AA (2008) Influence of cerium on the texture and ductility of magnesium extrusions. Scripta Mater 59(5):562–565. doi:10.1016/j.scriptamat.2008.05.019

    Article  Google Scholar 

  121. Barnett MR, Nave MD, Bettles CJ (2004) Deformation microstructures and textures of some cold rolled Mg alloys. Mater Sci Eng 386(1–2):205–211. doi:10.1016/s0921-5093(04)00942-6

    Article  Google Scholar 

  122. Omori G, Matsuo S, Asada H (1975) Precipitation Process in a Mg–Ce Alloy. T JPN I MET 16(5):247–255

    Article  Google Scholar 

  123. Peng Q, Hou X, Wang L, Wu Y, Cao Z, Wang L (2009) Microstructure and mechanical properties of high performance Mg–Gd based alloys. Mater Des 30(2):292–296. doi:10.1016/j.matdes.2008.04.069

    Article  Google Scholar 

  124. Peng QM, Wu YM, Fang DQ, Meng J, Wang LM (2007) Microstructures and properties of Mg–7Gd alloy containing Y. J Alloys Compd 430(1–2):252–256. doi:10.1016/j.jallcom.2006.05.004

    Article  Google Scholar 

  125. Yamasaki M, Anan T, Yoshimoto S, Kawamura Y (2005) Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scripta Mater 53(7):799–803. doi:10.1016/j.scriptamat.2005.06.006

    Article  Google Scholar 

  126. Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y (2007) Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature. Acta Mater 55(20):6798–6805. doi:10.1016/j.actamat.2007.08.033

    Article  Google Scholar 

  127. Zhang J, Leng Z, Liu S, Li J, Zhang M, Wu R (2011) Microstructure and mechanical properties of Mg–Gd–Dy–Zn alloy with long period stacking ordered structure or stacking faults. J Alloys Compd 509(29):7717–7722. doi:10.1016/j.jallcom.2011.04.089

    Article  Google Scholar 

  128. Wu D, Chen RS, Han EH (2011) Excellent room-temperature ductility and formability of rolled Mg–Gd–Zn alloy sheets. J Alloys Compd 509(6):2856–2863. doi:10.1016/j.jallcom.2010.11.141

    Article  Google Scholar 

  129. Gao L, Chen RS, Han EH (2009) Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J Alloys Compd 481(1–2):379–384. doi:10.1016/j.jallcom.2009.02.131

    Article  Google Scholar 

  130. Gao X, He SM, Zeng XQ, Peng LM, Ding WJ, Nie JF (2006) Microstructure evolution in a Mg–15Gd–0.5Zr (wt%) alloy during isothermal aging at 250°C. Mater Sci Eng. doi:10.1016/j.msea.2006.06.018

    Google Scholar 

  131. Gao X, Nie JF (2008) Enhanced precipitation-hardening in Mg–Gd alloys containing Ag and Zn. Scripta Mater 58(8):619–622. doi:10.1016/j.scriptamat.2007.11.022

    Article  Google Scholar 

  132. Nie JF, Oh-ishi K, Gao X, Hono K (2008) Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy. Acta Mater 56(20):6061–6076. doi:10.1016/j.actamat.2008.08.025

    Article  Google Scholar 

  133. Nie J, Zhu Y, Liu J, Fang X-Y (2013) Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340(6135):957–960

    Article  Google Scholar 

  134. Lv B, Peng J, Peng Y, Tang A (2013) The effect of addition of Nd and Ce on the microstructure and mechanical properties of ZM21 Mg alloy. J Magnesium Alloys 1(1):94–100. doi:10.1016/j.jma.2013.02.011

    Article  Google Scholar 

  135. Ma L, Mishra RK, Peng L, Luo AA, Ding W, Sachdev AK (2011) Texture and mechanical behavior evolution of age-hardenable Mg–Nd–Zn extrusions during aging treatment. Mater Sci Eng, A 529:151–155. doi:10.1016/j.msea.2011.09.011

    Article  Google Scholar 

  136. Ning ZL, Wang H, Liu HH, Cao FY, Wang ST, Sun JF (2010) Effects of Nd on microstructures and properties at the elevated temperature of a Mg–0.3Zn–0.32Zr alloy. Mater Des 31(9):4438–4444. doi:10.1016/j.matdes.2010.04.021

    Article  Google Scholar 

  137. Gorsse S, Hutchinson CR, Chevalier B, Nie JF (2005) A thermodynamic assessment of the Mg–Nd binary system using random solution and associate models for the liquid phase. J Alloys Compd 392(1–2):253–262. doi:10.1016/j.jallcom.2004.09.040

    Article  Google Scholar 

  138. Hadorn JP, Agnew SR (2012) A new metastable phase in dilute, hot-rolled Mg–Nd alloys. Mater Sci Eng, A 533:9–16. doi:10.1016/j.msea.2011.10.111

    Article  Google Scholar 

  139. Wang J, Beyerlein IJ (2012) Atomic Structures of $$ [0\bar{1}10] $$ Symmetric Tilt Grain Boundaries in Hexagonal Close-Packed (hcp) Crystals. Metall Mater Trans A 43(10):3556–3569. doi:10.1007/s11661-012-1177-6

    Article  Google Scholar 

  140. Wang J, Beyerlein IJ (2012) Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals. Modell Simul Mater Sci Eng 20(2):024002. doi:10.1088/0965-0393/20/2/024002

    Article  Google Scholar 

  141. Herrera-Solaz V, Hidalgo-Manrique P, Pérez-Prado MT, Letzig D, Llorca J, Segurado J (2014) Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys. Mater Lett 128:199–203. doi:10.1016/j.matlet.2014.04.144

    Article  Google Scholar 

  142. Sánchez-Martín R, Pérez-Prado MT, Segurado J, Bohlen J, Gutiérrez-Urrutia I, Llorca J, Molina-Aldareguia JM (2014) Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation. Acta Mater 71:283–292. doi:10.1016/j.actamat.2014.03.014

    Article  Google Scholar 

  143. Dudamell NV, Hidalgo-Manrique P, Chakkedath A, Chen Z, Boehlert CJ, Gálvez F, Yi S, Bohlen J, Letzig D, Pérez-Prado MT (2013) Influence of strain rate on the twin and slip activity of a magnesium alloy containing neodymium. Mater Sci Eng, A 583:220–231. doi:10.1016/j.msea.2013.07.003

    Article  Google Scholar 

  144. Gärtnerová V, Trojanová Z, Jäger A, Palček P (2004) Deformation behaviour of Mg–0.7 wt% Nd alloy. J Alloys Compd 378(1–2):180–183. doi:10.1016/j.jallcom.2003.11.172

    Article  Google Scholar 

  145. Du YZ, Qiao XG, Zheng MY, Wu K, Xu SW (2015) The microstructure, texture and mechanical properties of extruded Mg–5.3Zn–0.2Ca–0.5Ce (wt%) alloy. Mater Sci Eng, A 620:164–171. doi:10.1016/j.msea.2014.10.028

    Article  Google Scholar 

  146. Homma T, Kunito N, Kamado S (2009) Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scripta Mater 61(6):644–647. doi:10.1016/j.scriptamat.2009.06.003

    Article  Google Scholar 

  147. Peng Q, Huang Y, Kainer KU, Hort N (2012) High ductile as-cast Mg–RE based alloys at room temperature. Mater Lett 83:209–212. doi:10.1016/j.matlet.2011.08.009

    Article  Google Scholar 

  148. Wu D, Chen RS, Tang WN, Han EH (2012) Influence of texture and grain size on the room-temperature ductility and tensile behavior in a Mg–Gd–Zn alloy processed by rolling and forging. Mater Des 41:306–313. doi:10.1016/j.matdes.2012.04.033

    Article  Google Scholar 

  149. Hou X, Cao Z, Zhao L, Wang L, Wu Y, Wang L (2012) Microstructure, texture and mechanical properties of a hot rolled Mg–6.5Gd–1.3Nd–0.7Y–0.3Zn alloy. Mater Des 34:776–781. doi:10.1016/j.matdes.2011.06.068

    Article  Google Scholar 

  150. Fan J, Yang G, Chen S, Xie H, Wang M, Zhou Y (2004) Effect of rare earths (Y, Ce) additions on the ignition points of magnesium alloys. J Mater Sci 39(20):6375–6377. doi:10.1023/B:JMSC.0000043613.94027.04

    Article  Google Scholar 

  151. Garcés G, Requena G, Tolnai D, Pérez P, Adeva P, Stark A, Schell N (2014) Influence of rare-earth addition on the long-period stacking ordered phase in cast Mg–Y–Zn alloys. J Mater Sci 49(7):2714–2722. doi:10.1007/s10853-013-7967-4

    Article  Google Scholar 

  152. Lentz M, Gall S, Schmack F, Mayer H, Reimers W (2014) Hot working behavior of a WE54 magnesium alloy. J Mater Sci 49(3):1121–1129

    Article  Google Scholar 

  153. Wei L, Dunlop G, Westengen H (1996) Age hardening and precipitation in a cast magnesium-rare-earth alloy. J Mater Sci 31(2):387–397

    Article  Google Scholar 

  154. Weiss D, Kaya A, Aghion E, Eliezer D (2002) Microstructure and creep properties of a cast Mg–1.7% wt rare earth-0.3% wt Mn alloy. J Mater Sci 37(24):5371–5379. doi:10.1023/A:1021001813867

    Article  Google Scholar 

  155. Changizian P, Zarei-Hanzaki A, Ghambari M, Imandoust A (2013) Flow localization during severe plastic deformation of AZ81 magnesium alloy: micro-shear banding phenomenon. Mater Sci Eng 582:8–14

    Article  Google Scholar 

  156. Liu WC, Dong J, Song X, Belnoue JP, Hofmann F, Ding WJ, Korsunsky AM (2011) Effect of microstructures and texture development on tensile properties of Mg–10Gd–3Y alloy. Mater Sci Eng 528(6):2250–2258. doi:10.1016/j.msea.2010.12.009

    Article  Google Scholar 

  157. Chino Y, Sassa K, Mabuchi M (2008) Texture and stretch formability of Mg–1.5 mass% Zn-0.2 mass% Ce alloy rolled at different rolling temperatures. Mater Trans 49(12):2916–2918

    Article  Google Scholar 

  158. Chino Y, Sassa K, Mabuchi M (2009) Texture and stretch formability of a rolled Mg–Zn alloy containing dilute content of Y. Mater Sci Eng 513–514:394–400. doi:10.1016/j.msea.2009.01.074

    Article  Google Scholar 

  159. Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda HY, Umakoshi Y (2010) Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater 58(19):6282–6293. doi:10.1016/j.actamat.2010.07.050

    Article  Google Scholar 

  160. Kawamura Y, Yamasaki M (2007) Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater Trans 48(11):2986–2992. doi:10.2320/matertrans.MER2007142

    Article  Google Scholar 

  161. Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M (2005) Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Mater Sci Eng 393(1–2):269–274. doi:10.1016/j.msea.2004.10.040

    Article  Google Scholar 

  162. Shao XH, Yang ZQ, Ma XL (2010) Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater 58(14):4760–4771. doi:10.1016/j.actamat.2010.05.012

    Article  Google Scholar 

  163. Tong LB, Li XH, Zhang HJ (2013) Effect of long period stacking ordered phase on the microstructure, texture and mechanical properties of extruded Mg–Y–Zn alloy. Mater Sci Eng 563:177–183. doi:10.1016/j.msea.2012.10.088

    Article  Google Scholar 

  164. Garces G, Morris DG, Muñoz-Morris MA, Perez P, Tolnai D, Mendis C, Stark A, Lim HK, Kim S, Shell N, Adeva P (2015) Plasticity analysis by synchrotron radiation in a Mg97Y2Zn1 alloy with bimodal grain structure and containing LPSO phase. Acta Mater 94:78–86. doi:10.1016/j.actamat.2015.04.048

    Article  Google Scholar 

  165. Tong LB, Li X, Zhang DP, Cheng LR, Meng J, Zhang HJ (2014) Dynamic recrystallization and texture evolution of Mg–Y–Zn alloy during hot extrusion process. Mater Charact 92:77–83. doi:10.1016/j.matchar.2014.03.006

    Article  Google Scholar 

  166. Li L (2013) Micro structure and texture evolution during super plastic deformation of Mg–Re extruded alloy. J Alloys Compd 555:255–262. doi:10.1016/j.jallcom.2012.12.072

    Article  Google Scholar 

  167. Sanjari M, Farzadfar A, Kabir ASH, Utsunomiya H, Jung I-H, Petrov R, Kestens L, Yue S (2013) Promotion of texture weakening in magnesium by alloying and thermomechanical processing: (I) alloying. J Mater Sci 49(3):1408–1425. doi:10.1007/s10853-013-7826-3

    Article  Google Scholar 

  168. Ganeshan S, Hector L, Liu Z-K (2010) First-principles study of self-diffusion in hcp Mg and Zn. Comput Mater Sci 50(2):301–307

    Article  Google Scholar 

  169. Ganeshan S, Hector L, Liu Z-K (2011) First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model. Acta Mater 59(8):3214–3228

    Article  Google Scholar 

  170. Zeng ZR, Bian MZ, Xu SW, Davies CHJ, Birbilis N, Nie JF (2015) Texture evolution during cold rolling of dilute Mg alloys. Scripta Mater 108:6–10. doi:10.1016/j.scriptamat.2015.06.009

    Article  Google Scholar 

  171. Zeng ZR, Zhu YM, Xu SW, Bian MZ, Davies CHJ, Birbilis N, Nie JF (2016) Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Mater 105:479–494. doi:10.1016/j.actamat.2015.12.045

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Imandoust.

Ethics declarations

Confict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imandoust, A., Barrett, C.D., Al-Samman, T. et al. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. J Mater Sci 52, 1–29 (2017). https://doi.org/10.1007/s10853-016-0371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0371-0

Keywords

Navigation