Skip to main content
Log in

Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution during tensile deformation of an AZ31 alloy with grain size ranging from 17 to 40 µm, at intermediate temperatures, has been studied using electron backscattered diffraction (EBSD) and optical microscopy (OM) as the main characterization tools. Two deformation regimes could be distinguished. In the high-strain-rate regime, the stress exponent was found to be about 6, and the activation energy is close to that for Mg self-diffusion. These values are indicative of climb-controlled creep. In the lower strain rate range, elongations higher than 300 pct were measured. In this range, significant dynamic grain growth takes place during the test, and thus, the predominant deformation mechanisms have been investigated by means of strain-rate-change tests. It was found that the stress exponent varied during the test between 1.7 and 2.5, while the activation energy remains close to that for grain-boundary diffusion. The EBSD analysis revealed, additionally, the appearance of low to moderately misoriented boundaries that tend to lay perpendicular to the tensile axis. The enhanced ductility of this AZ31 alloy in this regime is attributed to the operation of a sequence of deformation mechanisms. Initially, grain-boundary sliding governs deformation; once dynamic grain growth occurs, dislocation slip becomes gradually more important. Dislocation interaction gives rise to the appearance of new interfaces by continuous dynamic recrystallization (CDRX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.

    Article  Google Scholar 

  2. C. Jaschik, H. Haferkamp, and M. Niemeyer: Magnesium Alloys and Their Application, Wiley-VCH, Weinheim, 2000, pp. 41–46.

    Book  Google Scholar 

  3. A. Yamashita, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2001, vol. 300, pp. 142–47.

    Article  Google Scholar 

  4. J.K. Solberg, J. Tørklep, O. Bauger, and H. Gjestland: Mater. Sci. Eng. A, 2001, vol. 134, pp. 1201–03.

    Google Scholar 

  5. H. Takuda, S. Kikuchi, and N. Hatta: J. Mater. Sci., 1992, vol. 27, pp. 937–40.

    Article  CAS  Google Scholar 

  6. A. Bussiba, A. Ben Artzy, S. Shtechman, and M. Ifergan: Mater. Sci. Eng. A, 2001, vol. 302, pp. 56–62.

    Article  Google Scholar 

  7. A. Mwembela, E.B. Konopleva, and H.J. McQueen: Scripta Mater., 1997, vol. 37 (11), pp. 1789–95.

    Article  CAS  Google Scholar 

  8. H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi, and K. Higashi: Mater. Sci. Eng. A, 2001, vol. 307, pp. 119–28.

    Article  Google Scholar 

  9. W.A. Backofen, G.S. Murty, and S.W. Zehr: Trans. AIME, 1968, vol. 242, p. 329.

    CAS  Google Scholar 

  10. R.Z. Valiev and O.A. Kaibyshev: Phys. Status Solidi, 1977, vol. 44, pp. 477–65.

    Article  CAS  Google Scholar 

  11. X. Wu and Y. Liu: Scripta Mater., 2002, vol. 46, pp. 269–74.

    Article  CAS  Google Scholar 

  12. H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, and K. Higashi: Acta Mater., 1999, vol. 47 (14), pp. 3753–58.

    Article  CAS  Google Scholar 

  13. T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, and K. Higashi: Mater. Sci. Eng. A, 2000, vol. 290, pp. 139–44.

    Article  Google Scholar 

  14. J.C. Tan and M.J. Tan: Mater. Sci. Eng. A, 2003, vol. 339, pp. 81–89.

    Article  Google Scholar 

  15. T.G. Nieh, J. Wadsworth, and O.D. Sherby: Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, United Kindom, 1997, p. 23.

    Google Scholar 

  16. K. Kubota, M. Mabuchi, and K. Higashi: J. Mater. Sci., 1999, vol. 34, pp. 2255–62.

    Article  CAS  Google Scholar 

  17. J.C. Tan and M.J. Tan: Mater. Sci. Eng. A, 2003, vol. 339, pp. 124–32.

    Article  Google Scholar 

  18. O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1968, vol. 13, pp. 325–90.

    Article  Google Scholar 

  19. P. Yavari, F. Mohamed, and T.G. Langdon: Acta Metall., 1981, vol. 29, pp. 1495–1507.

    Article  CAS  Google Scholar 

  20. M.E. Kassner and M.T. Pérez-Prado: Progr. Mater. Sci., 2000, vol. 45 (1), pp. 1–102.

    Article  CAS  Google Scholar 

  21. E.M. Taleff and P.J. Nevland: JOM, 1999, vol. 51 (1), pp. 34–36.

    CAS  Google Scholar 

  22. W.J. Kim, S.W. Chung, C.W. An, and K. Higashi: J. Mater. Sci. Lett., 2001, vol. 20, pp. 1635–37.

    Article  CAS  Google Scholar 

  23. V. Randle and O. Engler: Macrotexture, Microtexture and Orientation Mapping, Gordon and Breach Science Publishers, Amsterdam, The Netherlands, 2000.

    Google Scholar 

  24. M.T. Pérez-Prado, G. González-Doncel, O.A. Ruano, and T.R. McNelley: Acta Mater., 2001, vol. 49 (12), pp. 2259–68.

    Article  Google Scholar 

  25. M.T. Pérez-Prado, T.R. McNelley, D.L. Swisher, G. González-Doncel, and O.A. Ruano: Mater. Sci. Eng., 2003, vol. 342, pp. 216–30.

    Article  Google Scholar 

  26. T. Watanabe and S. Tsurekawa: Acta Mater., 1999, vol. 47 (15), pp. 4171–85.

    Article  CAS  Google Scholar 

  27. J.A. del Valle, M.T. Pérez-Prado, and O.A. Ruano: Rev. Metal. Madrid, 2002, vol. 38 (5), pp. 353–57.

    Google Scholar 

  28. M.J. Philippe: Int. Conf. on Textures of Materials ICOTOM-11, Mater. Sci. Forum, 1994, vols. 157–162, pp. 1337–50.

    Google Scholar 

  29. G. Sambasiva and Y.V.R.K. Rao: Metall. Trans. A, 1982, vol. 13A, pp. 2219–2226.

    Google Scholar 

  30. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.

    Article  CAS  Google Scholar 

  31. O.A. Ruano, A.K. Miller, and O.D. Sherby: Mater. Sci. Eng., 1981, vol. 51, pp. 9–16.

    Article  CAS  Google Scholar 

  32. J.J. Blandin, D. Giunchi, M. Suéry, and E. Evangelista: Mater. Sci. Technol., 2002, vol. 18, pp. 333–40.

    Article  CAS  Google Scholar 

  33. F. Li, D.H. Bae, and A.K. Ghosh: Acta Mater., 1997, vol. 45 (9), pp. 3887–95.

    Article  CAS  Google Scholar 

  34. M.T. Pérez-Prado, T.R. McNelley, D.L. Swisher, G. González-Doncel, and O.A. Ruano: Mater. Sci. Eng., 2003, vol. 342 (1–2), pp. 216–30.

    Google Scholar 

  35. M. Urdanpilleta: Ph.D. Thesis, CEIT, San Sebastián, Spain, 2003.

    Google Scholar 

  36. B.P. Kashyap, W. Fan, and M.C. Chaturvedi: Mater. Sci. Technol., 2000, vol. 17, pp. 237–48.

    Article  Google Scholar 

  37. M.G. Zelin, H.S. Yang, R.Z. Valiev, and A.K. Mukherjee: Metall. Trans. A, 1992, vol. 23A, pp. 3135–40.

    CAS  Google Scholar 

  38. H. Brunner and N.J. Grant: Trans. AIME, 1960, vol. 218, pp. 122–27.

    CAS  Google Scholar 

  39. R.Z. Valiev and O.A. Kaibyshev: Acta Metall., 1983, vol. 31, pp. 2121–28.

    Article  CAS  Google Scholar 

  40. T.G. Langdon: Mater. Sci. Eng. A, 1994, vol. 174, pp. 225–30.

    Article  Google Scholar 

  41. J. Liu and D.J. Chakrabarti: Acta Mater., 1996, vol. 44, pp. 4647–61.

    Article  CAS  Google Scholar 

  42. M.T. Pérez-Prado, T.R. McNelley, G. González-Doncel, and O.A. Ruano: Mater. Sci. Forum, 2001, vols. 357–359, pp. 255–60.

    Article  Google Scholar 

  43. T.R. McNelley, M.E. MacMahon, and M.T. Pérez-Prado: Phil. Trans. R. Soc., 1999, vol. 357, pp. 1683–1705.

    Article  CAS  Google Scholar 

  44. E.W. Kelley and W.F. Hosford: Trans. AIME, 1968, vol. 242, pp. 5–13.

    CAS  Google Scholar 

  45. E.W. Kelley and W.F. Hosford: Trans. AIME, 1968, vol. 242, pp. 654–60.

    CAS  Google Scholar 

  46. A. Couret and D. Caillard: Acta Metall., 1985, vol. 33(8), pp. 1447–54.

    Article  CAS  Google Scholar 

  47. A. Couret and D. Caillard: Acta Metall., 1985, vol. 33(8), pp. 1455–62.

    Article  CAS  Google Scholar 

  48. M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409–18.

    Google Scholar 

  49. M.R. Barnett: J. Light Met., 2001, vol. 1, pp. 167–77.

    Article  Google Scholar 

  50. T. Obara, H. Yoshinga, and S. Morozumi: Acta Metall., 1973, vol. 21, pp. 845–53.

    Article  CAS  Google Scholar 

  51. H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, and K. Higashi: Int. J. Plasticity, 2001, vol. 17, pp. 387–97.

    Article  CAS  Google Scholar 

  52. S.S. Vagarali and T.G. Langdon: Acta Metall., 1982, vol. 30, pp. 1157–70.

    Article  CAS  Google Scholar 

  53. E.M. Taleff, D.R. Lesuer, and J. Wadsworth: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 343–52.

    CAS  Google Scholar 

  54. E.M. Taleff, P.J. Nevland, and P.E. Krajewski: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1119–30.

    Article  CAS  Google Scholar 

  55. H.J. McQueen and M.E. Kassner: in Superplasticity in Aerospace, H.C. Heikkenen and T.R. McNelley, eds, TMS, Warrendale, PA, 1988, pp. 77–96.

    Google Scholar 

  56. T.R. McNelley, D.J. Michel, and A. Salama: Scripta Metall., 1989, vol. 23, pp. 1657–62.

    Article  CAS  Google Scholar 

  57. G.A. Henshall, M.E. Kassner, and H.J. McQueen: Metall. Trans. A, 1992, vol. 23A, pp. 881–89.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Valle, J.A., Pérez-Prado, M.T. & Ruano, O.A. Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metall Mater Trans A 36, 1427–1438 (2005). https://doi.org/10.1007/s11661-005-0235-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0235-8

Keywords

Navigation