Skip to main content
Log in

Crystal structure and magnetic properties of Bi1−x Ca x Fe1−x Mn(Ti) x O3 ceramics across the phase boundary

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crystal structure and magnetic properties of BiFeO3 compounds co-doped with Ca and Mn ions as well as Ca and Ti ones were studied using diffraction and magnetometry techniques. Crystal structure of the Bi1−x Ca x Fe1−x Mn x O3 ceramics with x < 0.19 was attested to be single phase rhombohedral one, structural data obtained for the compounds co-doped with Ca and Ti ions testify stability of the polar rhombohedral state up to the concentration level of 25 %. Co-doping with Ca and Mn ions gradually modifies magnetic structure of the compounds toward weak ferromagnetic one; there is no correlation observed between the type of structural distortion and magnetic structure of the compounds. The Bi1−x Ca x Fe1−x Mn x O3 compounds with x > 0.25 show complex magnetic behavior associated with the coexistence of antiferromagnetic matrix and magnetic clusters. Compounds co-doped with Ca and Ti ions with rhombohedral structure testify nearly three times larger remnant magnetization as compared with that observed for Ca|Mn-doped series, and magnetic state of the compounds with x > 0.1 remains to be homogeneous weak ferromagnetic one up to x ~ 0.3, and above this concentration, magnetic structure is disrupted because of diamagnetic dilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kadomtseva AM, Popov YF, Pyatakov AP, Vorob’ev GP, Zvezdin AK, Viehland D (2006) Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’. Ph Transit 79:1019–1042

    Article  Google Scholar 

  2. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  Google Scholar 

  3. Sosnowska I, Schäfer W, Kockelmann W, Andersen KH, Troyanchuk IO (2002) Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese. Appl Phys A 74:s1040–s1042

    Article  Google Scholar 

  4. Przeniosło R, Palewicz A, Regulski M, Sosnowska I, Ibberson RM, Knight KS (2006) Does the modulated magnetic structure of BiFeO3 change at low temperatures? J Phys 18:2069–2075

    Google Scholar 

  5. Sosnowska I, Neumaier TP, Steichele E (1982) Spiral magnetic ordering in bismuth ferrite. J Phys C 15:4835–4846

    Article  Google Scholar 

  6. Ryu S, Kim J-Y, Shin Y-H, Park B-G, Son JY, Jang HM (2009) Enhanced magnetization and modulated orbital hybridization in epitaxially constrained BiFeO3 thin films with rhombohedral symmetry. Chem Mater 21:5050–5057

    Article  Google Scholar 

  7. Troyanchuk IO, Karpinsky DV, Bushinsky MV, Kovetskaya MI, Efimova EA, Eremenko VV (2012) Morphotropic phase boundary, weak ferromagnetism, and strong piezoelectric effect in Bi1−x Ca x FeO3−x/2 compounds. J Exp Theory Phys 113:1025–1031

    Article  Google Scholar 

  8. Troyanchuk IO, Tereshko NV, Karpinsky DV, Kholkin AL, Kopcewicz M, Barner K (2011) Enhanced piezoelectric and magnetic properties of Bi1−x Ca x Fe1−x/2Nb x/2O3 solid solutions. J Appl Phys 109:114102–114106

    Article  Google Scholar 

  9. Agarwal RA, Sanghi S, Ahlawat A, Ahlawat N (2012) Structural transformation and improved dielectric and magnetic properties in Ti-substituted Bi0.8La0.2FeO3 multiferroics. J Phys D 45:165001–165009

    Article  Google Scholar 

  10. Rusakov DA, Abakumov AM, Yamaura K, Belik AA, Van Tendeloo G, Takayama-Muromachi E (2010) Structural evolution of the BiFeO3–LaFeO3 system. Chem Mater 23:285–292

    Article  Google Scholar 

  11. Karpinsky DV, Troyanchuk IO, Vidal JV, Sobolev NA, Kholkin AL (2011) Enhanced ferroelectric, magnetic and magnetoelectric properties of Bi1−x Ca x Fe1−x Ti x O3 solid solutions. Solid State Commun 151:536–540

    Article  Google Scholar 

  12. Yoo YJ, Hwang JS, Lee YP et al (2015) Origin of enhanced multiferroic properties in Dy and Co co-doped BiFeO3 ceramics. J Magn Magn Mater 374:669–675

    Article  Google Scholar 

  13. Yang C-H, Kan D, Takeuchi I, Nagarajan V, Seidel J (2012) Doping BiFeO3: approaches and enhanced functionality. Phys Chem Chem Phys 14:15953–15962

    Article  Google Scholar 

  14. Karpinsky DV, Troyanchuk IO, Mantytskaja OS et al (2014) Magnetic and piezoelectric properties of the Bi1−x La x FeO3 system near the transition from the polar to antipolar phase. Phys Solid State 56:701–706

    Article  Google Scholar 

  15. Karpinsky DV, Troyanchuk IO, Pushkarev NV et al (2015) Evolution of electromechanical properties of Bi1−x Pr x FeO3 solid solutions across the rhombohedral–orthorhombic phase boundary: role of covalency. J Alloys Compd 638:429

    Article  Google Scholar 

  16. Kan D, Palova L, Anbusathaiah V et al (2010) Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 20:1108–1115

    Article  Google Scholar 

  17. Karpinsky DV, Troyanchuk IO, Tovar M et al (2014) Temperature and composition-induced structural transitions in Bi1−x La(Pr) x FeO3 ceramics. J Am Ceram Soc 97:2631–2638

    Article  Google Scholar 

  18. Seidel J, Trassin M, Zhang Y et al (2014) Electronic properties of isosymmetric phase boundaries in highly strained Ca-doped BiFeO3. Adv Mater 26:4376–4380

    Article  Google Scholar 

  19. Karpinsky DV, Troyanchuk IO, Tovar M, Sikolenko V, Efimov V, Kholkin AL (2013) Evolution of crystal structure and ferroic properties of La-doped BiFeO3 ceramics near the rhombohedral-orthorhombic phase boundary. J Alloys Compd 555:101–107

    Article  Google Scholar 

  20. Arnold D (2015) Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: a review. IEEE Trans Ultrason Ferroelectr Freq Control 62:62–82

    Article  Google Scholar 

  21. Perejon A, Sanchez-Jimenez PE, Perez-Maqueda LA et al (2014) Single phase, electrically insulating, multiferroic La-substituted BiFeO3 prepared by mechanosynthesis. J Mater Chem C 2:8398–8411

    Article  Google Scholar 

  22. Du Y, Cheng ZX, Shahbazi M, Collings EW, Dou SX, Wang XL (2010) Enhancement of ferromagnetic and dielectric properties in lanthanum doped BiFeO3 by hydrothermal synthesis. J Alloys Compd 490:637–641

    Article  Google Scholar 

  23. Khomchenko VA, Kiselev DA, Kopcewicz M et al (2009) Doping strategies for increased performance in BiFeO3. J Magn Magn Mater 321:1692–1698

    Article  Google Scholar 

  24. Kumar P, Shankhwar N, Srinivasan A, Kar M (2015) Oxygen octahedra distortion induced structural and magnetic phase transitions in Bi1−x Ca x Fe1−x Mn x O3 ceramics. J Appl Phys 117:194103–194116

    Article  Google Scholar 

  25. Yin LH, Song WH, Jiao XL et al (2009) Multiferroic and magnetoelectric properties of Bi1−x Ba x Fe1−x Mn x O3 system. J Phys D 42:205402–205406

    Article  Google Scholar 

  26. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69

    Article  Google Scholar 

  27. Karimi S, Reaney I, Han Y, Pokorny J, Sterianou I (2009) Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J Mater Sci 44:5102–5112. doi:10.1007/s10853-009-3545-1

    Article  Google Scholar 

  28. Xu B, Wang D, Íñiguez J, Bellaiche L (2014) Finite-temperature properties of rare-earth-substituted BiFeO3 multiferroic solid solutions. Adv Funct Mater 23:552–558

    Google Scholar 

  29. Khomchenko VA, Paixão JA (2016) Ti doping-induced magnetic and morphological transformations in Sr- and Ca-substituted BiFeO3. J Phys 28:166004–166009

    Google Scholar 

  30. Yin LH, Sun YP, Zhang FH et al (2009) Magnetic and electrical properties of Bi0.8Ca0.2Fe1−x Mn x O3 (0 ≤ x ≤ 0.5). J Alloys Compd 488:254

    Article  Google Scholar 

  31. Sosnowska IM (2009) Neutron scattering studies of BiFeO3 multiferroics: a review for microscopists. J Microsc 236:109–114

    Article  Google Scholar 

  32. Kothai V, Senyshyn A, Ranjan R (2013) Competing structural phase transition scenarios in the giant tetragonality ferroelectric BiFeO3–PbTiO3: isostructural vs multiphase transition. J Appl Phys 113:084102–084109

    Article  Google Scholar 

  33. Karpinsky DV, Troyanchuk IO, Sikolenko V, Efimov V, Kholkin AL (2013) Electromechanical and magnetic properties of BiFeO3–LaFeO3–CaTiO3 ceramics near the rhombohedral–orthorhombic phase boundary. J Appl Phys 113:187218–187223

    Article  Google Scholar 

  34. Schönau KA, Knapp M, Maglione M, Fuess H (2009) In situ investigation of the stability field and relaxation behavior of nanodomain structures in morphotropic Pb[Zr1−x Ti x ]O3 under variations in electric field and temperature. Appl Phys Lett 94:122902–122904

    Article  Google Scholar 

  35. Schönau KA, Schmitt LA, Knapp M et al (2007) Nanodomain structure of Pb[Zr1−x Ti x ]O3 at its morphotropic phase boundary: investigations from local to average structure. Phys Rev B 75:184117–184126

    Article  Google Scholar 

  36. Selbach SM, Tybell T, Einarsrud MA, Grande T (2008) The ferroic phase transitions of BiFeO3. Adv Mater 20:3692–3696

    Article  Google Scholar 

  37. Troyanchuk IO, Karpinsky DV, Lobanovsky LS, Franz A, Silibin MV, Gavrilov SA (2016) Magnetic properties and magnetoresistance in La0.5Sr0.5Co1−x Me x O3 (Me = Cr, Ga, Ti, Fe) cobaltites. Mater Res Express 3:016101–016107

    Article  Google Scholar 

  38. Karpinsky DV, Troyanchuk IO, Silibin MV et al (2016) Structure and magnetic interactions in (Sr, Sb)-doped lanthanum manganites. Phys B 489:45–50

    Article  Google Scholar 

  39. Ederer C, Spaldin NA (2005) Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B 71:060401–060404

    Article  Google Scholar 

  40. Mao J, Sui Y, Zhang X et al (2011) Temperature- and magnetic-field-induced magnetization reversal in perovskite YFe0.5Cr0.5O3. Appl Phys Lett 98:192510–192511

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the RSF (Project #15-19-20038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Karpinsky.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpinsky, D.V., Troyanchuk, I.O., Bushinsky, M.V. et al. Crystal structure and magnetic properties of Bi1−x Ca x Fe1−x Mn(Ti) x O3 ceramics across the phase boundary. J Mater Sci 51, 10506–10514 (2016). https://doi.org/10.1007/s10853-016-0271-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0271-3

Keywords

Navigation