Skip to main content
Log in

Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bi(1−x)RExFeO3 (BREF100x, RE = La, Nd, Sm, Gd) has been investigated with a view to establish a broad overview of their crystal chemistry and domain structure. For x ≤ 0.1, the perovskite phase in all compositions could be indexed according to the rhombohedral, R3c cell of BiFeO3. For Nd and Sm doped compositions with 0.1 < x ≤ 0.2 and x = 0.15, respectively, a new antipolar phase was stabilised similar in structure to PbZrO3. The orthoferrite, Pnma structure was present for x > 0.1, x > 0.15, and x > 0.2 in Gd, Sm, and Nd doped BiFeO3, respectively. For x > 0.2, La doped compositions became pseudocubic at room temperatures but high angle XRD peaks were broad and asymmetric. These compositions have been indexed as the orthoferrite structure. It was concluded therefore that the orthoferrite phase appeared at lower values of x as the RE ferrite, end member tolerance factor decreased. However, the compositional window over which the PbZrO3-like phase was stable increased with increasing end member tolerance factor but was not found as single phase in La doped compositions at room temperature. On heating, the PbZrO3-like phase in BNF20 transformed to the orthoferrite, Pnma structure. TC for all compositions decreased with decreasing A-site, average ionic polarizabilty and tolerance factor. For compositions with R3c symmetry, superstructure and orientational, and translational (antiphase) domains were observed in a manner typical of an antiphase-tilted, ferroelectric perovskite. For the new PbZrO3-like phase orientational domains were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sosnowska I, Peterlin-Neumaier T, Steichele E (1982) J Phys C: Solid State Phys 15:4835

    Article  CAS  Google Scholar 

  2. Michel C, Moreau JM, Achenbach GD, Gerson R, James WJ (1969) Solid State Commun 7:701

    Article  CAS  Google Scholar 

  3. Neaton BJ, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) Phys Rev B Condens Matter Mater Phys 71:014113

    Article  Google Scholar 

  4. Teague JR, Gerson R, James WJ (1970) Solid State Commun 8:1073

    Article  CAS  Google Scholar 

  5. Kumar MM, Palkar VR, Srinivas K, Suryanarayana SV (2000) Appl Phys Lett 76(19):2764

    Article  CAS  Google Scholar 

  6. Sosnowska I, Prezenioslo R, Fischer P, Murashov VA (1996) J Magn Magn Mater 160:384

    Article  CAS  Google Scholar 

  7. Fischer P, Polomska M, Sosnowska I, Szymanski M (1980) J Phys C: Solid State Phys 13:1931

    Article  CAS  Google Scholar 

  8. Kubel F, Schmid H (1990) Acta Crystallogr B46:698

    Article  CAS  Google Scholar 

  9. Nawala KS, Grag A, Upadhyaya A (2008) Mater Lett 62:878

    Article  Google Scholar 

  10. Hill NA (2000) J Phys Chem B24:6694

    Article  Google Scholar 

  11. Fedulov SA, Ladyzhinskii PB, Pyatigorskaya IL, Venevtsev YN (1964) Sov Phys Solid State 6:375

    Google Scholar 

  12. Yuan GL, Or SW (2006) J Appl Phys 100:024109

    Article  Google Scholar 

  13. Fiebig M (2005) J Phys D 38:R123

    Article  CAS  Google Scholar 

  14. Zhang ST, Zhang Y, Lu MH, Du CL, Chen YF, Liu ZG, Zhu YY, Ming NB (2006) Appl Phys Lett 88:162901

    Article  Google Scholar 

  15. Sosnowska I, Schaffer W, Kockelmann W, Anderson KH, Troyanchuk IO (2002) Appl Phys A: Mater Sci Process 74:S1040

    Article  CAS  Google Scholar 

  16. Bai F, Wang J, Wuttig M, Li J, Wang N, Pyatakov AP, Zvezdin AK, Cross LE, Viehland D (2005) Appl Phys Lett 86(3):1

    Article  Google Scholar 

  17. Pradhan AK, Zhang K, Hunter D, Dadson JB, Loutts GB, Bhattacharya P, Katiyar R, Zhang J, Sellmyer DJ (2005) J Appl Phys 97:093903

    Article  Google Scholar 

  18. Lee YH, Wu JM, Lai CH (2006) Appl Phys Lett 88(4):042903

    Article  Google Scholar 

  19. Das SR, Choudhary RNP, Bhattacharya P, Katiyar RS, Dutta P, Manivannan A, Seehra MS (2007) J Appl Phys 101:034104

    Article  Google Scholar 

  20. Yuan GL, Or SW (2006) Appl Phys Lett 89:052905

    Article  Google Scholar 

  21. Uniyal P, Yadav KL (2008) Mater Lett 62(17–18):2858

    Article  CAS  Google Scholar 

  22. Woodward DI (2004) The crystal chemistry of bismuth-based perovskite solid solutions. PhD Thesis, University of Sheffield, UK

  23. Jaffe B, Cook WRJ, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  24. Shannon RD (1976) Acta Crystallogr A32:751

    Article  CAS  Google Scholar 

  25. Shannon RD (1993) J Appl Phys 73(1):348

    Article  CAS  Google Scholar 

  26. Karimi S, Reaney IM, Sterianou I, Levin I (2009) Appl Phys Lett 94(11):112903

    Article  Google Scholar 

  27. Marezio M, Remeika JP, Dernier PD (1970) Acta Crystallogr B26:2008

    Article  Google Scholar 

  28. Sawaguchi E, Maniwa H, Hoshino S (1951) Phys Rev 83(5):1078

    Article  CAS  Google Scholar 

  29. Woodward DI, Reaney IM (2005) Acta Crystallogr B61:387

    Article  CAS  Google Scholar 

  30. Reaney IM, Colla EL, Setter N (1994) J Appl Phys 33:3984

    Article  CAS  Google Scholar 

  31. Glazer AM, Ahtee M, Megaw HD (1972) Acta Crystallogr A28:179

    Google Scholar 

  32. Suárez D, Reaney IM, Lee WE (2001) J Mater Res 16(11):3139

    Article  Google Scholar 

  33. Levin I, Stennett MC, Miles GC, Woodward DI, West AR, Reaney IM (2006) Appl Phys Lett 89:122908

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor C. A. Randall, Professor D.C. Sinclair, and Dr. I. Levin for their useful discussions concerning this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Reaney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimi, S., Reaney, I.M., Han, Y. et al. Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J Mater Sci 44, 5102–5112 (2009). https://doi.org/10.1007/s10853-009-3545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3545-1

Keywords

Navigation