Skip to main content
Log in

NiCo-selenide as a novel catalyst for water oxidation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The design and fabrication of sustainable and efficient electrocatalyst for water splitting are crucial for rechargeable metal-air batteries and regenerative fuel cells. In this report, a highly stable and active NiCo-selenide electrocatalyst was successfully prepared by a facile two-step solvothermal approach. In 0.1 M KOH alkaline electrolyte solution, the novel NiCo-selenide electrocatalyst afforded the current density of 10 mA cm−2 at a lower overpotential of 393 mV, a smaller Tafel slope of ~89 mV dec−1 and better stability, compared with NiCo-based oxide and sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xie J, Zhang H, Li S et al (2013) Defect-Rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25:5807–5813

    Article  Google Scholar 

  2. Suntivich J, May KJ, Gasteiger HA et al (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  Google Scholar 

  3. Yang SB, Zhi LJ, Tang K et al (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reaction. Adv Funct Mater 22:3634–3640

    Article  Google Scholar 

  4. Trotochaud L, Boettcher SW (2014) Precise oxygen evolution electrocatalysts: Status and opportunities. Scr Mater 74:25–32

    Article  Google Scholar 

  5. Smith RDL, Prévot MS, Fagan RD et al (2013) Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340:60–63

    Article  Google Scholar 

  6. Gong M, Li Y, Wang H et al (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455

    Article  Google Scholar 

  7. Yeo BS, Bell AT (2011) Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc 133:5587–5593

    Article  Google Scholar 

  8. Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous Silica as efficient oxygen-evolving electrocatalysts. Angew Chem Int Ed 48:1841–1844

    Article  Google Scholar 

  9. Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J Electroanal Chem 660:254–260

    Article  Google Scholar 

  10. Frame FA, Townsend TK, Chamousis RL et al (2011) Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J Am Chem Soc 133:7264–7267

    Article  Google Scholar 

  11. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photoelectrocatalysts. Chem Soc Rev 42:2568–2580

    Article  Google Scholar 

  12. Lee K, Sa Y, Jeong H et al (2015) Simple Coordination Complex-Derived Three-Dimensional Mesoporous Graphene as an Efficient Bifunctional Oxygen Electrocatalyst. Chem Comm 51:6773–6776

    Article  Google Scholar 

  13. Chung HT, Won JH, Zelenay P (2013) Active and Stable Carbon Nanotube/Nanoparticle Composite Electrocatalyst for Oxygen Reduction. Nat Com 4:1922–1927

    Article  Google Scholar 

  14. Tang C, Wang H, Zhang Q et al (2015) Spatially Confined Hybridization of Nanomete-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. Adv Mater 27:4516–4523

    Article  Google Scholar 

  15. Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. Angew Chem Int Ed 50:7238–7266

    Article  Google Scholar 

  16. Yin QS, Tan JM, Besson C et al (2010) A fast soluble carbon-free molecular water oxidation electrocatalyst based on abundant metals. Science 328:342–345

    Article  Google Scholar 

  17. Bajdich M, García-Mota M, Vojvodic A et al (2013) Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc 135:13520–13521

    Article  Google Scholar 

  18. Kyoungsuk J, Jimin P, Lee Joohee et al (2014) Hydrated Manganese(II) Phosphate (Mn3(PO4)2.times.3H2O) as a Water Oxidation Catalyst. J Am Chem Soc 136:7435–7443

    Article  Google Scholar 

  19. Takashima T, Hashimoto K, Nakamura R (2012) Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J Am Chem Soc 134:1519–1527

    Article  Google Scholar 

  20. Mircea D, Yogesh S, Daniel GN (2010) Nickel-borate oxygen-evolving catalyst that functions under benign conditions. PANS 107:10337–10341

    Article  Google Scholar 

  21. Matthew W, Kanan Daniel GN (2008) In Situ Formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  Google Scholar 

  22. Kim H, Morasero I, Gonzalezpedro V et al (2013) Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Com. 5:4256–4261

    Google Scholar 

  23. Kyoungsuk J, Arim C, Jimin P et al (2015) Partially oxidized sub-10 nm MnO nanocrystals with high activity for water oxidation catalysis. Sci Rep 5:10279–10290

    Article  Google Scholar 

  24. Chen R, Wang H, Miao J et al (2015) A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires. Nano Energy 11:333–340

    Article  Google Scholar 

  25. Zhang CF, Tapas K, Nam HK et al (2015) Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 89:328–339

    Article  Google Scholar 

  26. Yu XY, Yao XZ, Luo T et al (2014) Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl Mater Interfaces 6:3689–3695

    Article  Google Scholar 

  27. Su Y, Xu Q, Chen G et al (2015) One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties. Electrochim Acta 174:1216–1224

    Article  Google Scholar 

  28. Xiao J, Wan L, Yang SH et al (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 2:831–838

    Article  Google Scholar 

  29. Chen H, Jiang J, Zhang L et al (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

    Article  Google Scholar 

  30. Gao MR, Xu YF, Jiang J et al (2012) Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J Am Chem Soc 134:2930–2933

    Article  Google Scholar 

  31. Slanac DA, Hardin WG, Johnston KP et al (2012) Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy electrocatalysts for oxygen reduction in alkaline media. J Am Chem Soc 134:8912–9819

    Article  Google Scholar 

  32. Kong DS, Cha JJ, Wang HT et al (2013) First-row transition metal chalcogenide electrocatalysts for hydrogen evolution reaction. Energy Environ Sci 6:3553–3558

    Article  Google Scholar 

  33. Heiba ZK, Mostafa NY, Mohamed MB et al (2013) Structural and magnetic properties of ferromagnetic nano-sized (Ni1−x Co x )0.85Se prepared by simple hydrothermal method. Mater Lett 93:115–117

    Article  Google Scholar 

  34. Gao MR, Sheng WC, Zhuang ZB et al (2014) Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 136:7077–7084

    Article  Google Scholar 

  35. Son DH, Hughes SM, Yin Y et al (2004) Cation exchange reactions in ionic nanocrystals. Science 306:1009–1012

    Article  Google Scholar 

  36. Rivest JB, Jain PK (2013) Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev 42:89–96

    Article  Google Scholar 

  37. Zhao W, Zhang C, Geng F et al (2014) Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano 8:10909–10919

    Article  Google Scholar 

  38. Trotochaud L, Ranney JK, Williams KN et al (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 13:17253–17261

    Article  Google Scholar 

  39. Yang F, Yao JY, Liu FL et al (2013) Ni-Co oxides nanowire arrays grown on ordered TiO2 nanotubes with high performance in supercapacitors. J Mater Chem A 1:594–601

    Article  Google Scholar 

  40. Wu HB, Pang H, Lou XWD (2013) Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy Environ Sci 6:3619–3626

    Article  Google Scholar 

  41. Liu Q, Jin JT, Zhang JY (2013) NiCo2S4@graphene as abifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5:5002–5008

    Article  Google Scholar 

  42. NIST X-ray Photoelectron Spectroscopy Database. http://srdata.nist.gov/xps/EnergyTypeValSrch.aspx. Accessed 8 July 2015

  43. Xu J, Gao P, Zhao TS (2012) Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ Sci 5:5333–5339

    Article  Google Scholar 

  44. Ren L, Zhang HZ, Tan H et al (2004) Hexagonal selenium nanowires synthesized via vapor-phase growth. J Phys Chem B 108:4627–4630

    Article  Google Scholar 

  45. Shang C, Dong S, Wang S et al (2013) Coaxial Ni x Co2x (OH)6x /TiN nanotube arrays as supercapacitor electrodes. ACS Nano 7:5430–5436

    Article  Google Scholar 

  46. Zhao Z, Wu H, He H et al (2014) A high-performance binary Ni-Co hydroxide-based water oxidation electrode with three-dimensional coaxial nanotube array structure. Adv Funct Mater 24:4698–4705

    Article  Google Scholar 

  47. Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal electrocatalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614

    Article  Google Scholar 

  48. Huang WF, Zhou J, Li B et al (2015) A new route toward improved sodium ion batteries: a multifunctional fluffy Na0.67FePO4/CNT Nanocactus. Small 18:2170–2176

    Article  Google Scholar 

  49. Chen S, Qiao SZ (2013) Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 7:10190–10196

    Article  Google Scholar 

  50. Suntivich J, May KJ, Gasteiger HA et al (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  Google Scholar 

  51. Hammer B, Norskov JK (2000) Theoretical surface science and catalysis-calculations and concepts. Adv Catal 45:71–129

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Chongqing University Postgraduates’ Innovation Project and the Sharing Fund of Chongqing University’s Large-scale Equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhuai Zhang or Peng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Yang, Y., Li, Y. et al. NiCo-selenide as a novel catalyst for water oxidation. J Mater Sci 51, 3724–3734 (2016). https://doi.org/10.1007/s10853-015-9690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9690-9

Keywords

Navigation