Skip to main content

Advertisement

Log in

Tungsten-doped cobalt sulfide/selendie as high-efficient electrocatalyst for outstanding overall water splitting

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The development of earth-abundant and highly efficient bifunctional electrocatalysts is a pressing requirement for electrochemical water splitting. However, several critical challenges still need to be addressed. Element doping can effectively enhance the electrocatalytic activity by tuning the microstructure, morphology, and electronic structure. Therefore, this work rationally designs and prepares three-dimensional nanosphere-like structured W-doped CoS1.097/CoSe2 (W-CoS1.097/CoSe2) as efficient bifunctional electrocatalysts for overall water splitting. W-CoS1.097/CoSe2 exhibits super activities with an overpotential of 69.8 mV at −10 mA cm−2 for HER and 400.0 mV at 10 mA cm−2 for OER, respectively. This study provides a new approach for the design of dual-functional catalysts for alkaline water electrolysis of transition metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data and materials will be made available on request.

References

  1. Deng C, Toe CY, Li X et al (2022) Earth-abundant metal-based electrocatalysts promoted anodic reaction in hybrid water electrolysis for efficient hydrogen production: recent progress and perspectives. Adv Energy Mater 12(25):2201047

    Article  CAS  Google Scholar 

  2. Dong Q, Wang Q, Dai Z et al (2016) Mof-derived Zn-doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction. ACS Appl Mater Interfaces 8(40):26902–26907

    Article  CAS  PubMed  Google Scholar 

  3. Huang H-C, Li J, Zhao Y et al (2021) Adsorption energy as a promising single-parameter descriptor for single atom catalysis in the oxygen evolution reaction. J Mater Chem A 9(10):6442–6450

    Article  CAS  Google Scholar 

  4. Wu X, Yong C, An X et al (2021) NixCu1-x/CuO/Ni(Oh)2 as highly active and stable electrocatalysts for oxygen evolution reaction. New J Chem 45(39):18482–18490

    Article  CAS  Google Scholar 

  5. Dou S, Wang X, Wang S (2019) Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 3(1):1800211

    Article  Google Scholar 

  6. Liang Q, Chen J, Wang F et al (2020) Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 424:213488

    Article  CAS  Google Scholar 

  7. Zhang K, Zou R (2021) Advanced transition metal-based Oer electrocatalysts: current status, opportunities, and challenges. Small 17(37):2100129

    Article  CAS  Google Scholar 

  8. Hu Y, Yang H, Chen J et al (2019) Efficient hydrogen evolution activity and overall water splitting of metallic Co4N nanowires through tunable d-orbitals with ultrafast incorporation of FeOOH. ACS Appl Mater Interfaces 11(5):5152–5158

    Article  CAS  PubMed  Google Scholar 

  9. Zhou H, Zhang D, Dong W et al (2023) Stainless steel mesh-based CoSe/Ni3Se4 heterostructure for efficient electrocatalytic overall water splitting. Int J Hydrog Energy 39:14554–14564

    Article  Google Scholar 

  10. Hanan A, Solangi M, Shah A et al (2023) PdO@CoSe2 composites: efficient electrocatalysts for water oxidation in alkaline media. RSC Adv 13(1):743–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rauf M, Yang L, Wang J et al (2023) Correction: manipulation of oxygen evolution reaction kinetics of a free-standing CoSe2-NiSe2 heterostructured electrode by interfacial engineering. Sustain Energy & Fuels 7:904–904

    Article  CAS  Google Scholar 

  12. Chen J, Huang F, Ke S et al (2022) A dual-confinement strategy to construct cobalt-based phosphide nanoclusters within carbon nanofibers for bifunctional water splitting electrocatalysts. Dalton Trans 51(13):5168–5174

    Article  CAS  PubMed  Google Scholar 

  13. Lei L, Huang D, Zhang C et al (2020) F dopants triggered active sites in bifunctional cobalt sulfide@nickel foam toward electrocatalytic overall water splitting in neutral and alkaline media: experiments and theoretical calculations. J Catal 385:129–139

    Article  CAS  Google Scholar 

  14. Li Y, Hu L, Zheng W et al (2018) Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. Nano Energy 52:360–368

    Article  CAS  Google Scholar 

  15. Xiong T, Yao X, Zhu Z et al (2022) In situ grown Co-based interstitial compounds: Non-3d metal and non-metal dual modulation boosts alkaline and acidic hydrogen electrocatalysis. Small 18(9):2105331

    Article  CAS  Google Scholar 

  16. Tan Q, Xiao R, Yao X et al (2022) Non-oxygen anion-regulated in situ cobalt based heterojunctions for active alkaline hydrogen evolution catalysis. Chem Eng J 433:133514

    Article  CAS  Google Scholar 

  17. Zhao L, Yang A, Wang A et al (2020) Metallic Co, CoS, and P co-doped N enriched carbon derived from Zif-67 as an efficient catalyst for hydrogen evolution reaction. Int J Hydrog Energy 45(55):30367–30374

    Article  CAS  Google Scholar 

  18. Wang J, Wang Y, Yao Z et al (2020) Mo doped amorphous CoSx porous leaf-like nanostructure on Ti mesh as electrocatalyst for alkaline hydrogen production. J Electrochem Soc 167(11):114510

    Article  CAS  Google Scholar 

  19. Mosallanezhad A, Wei C, Koudakan PA et al (2022) Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Appl Catal B Environ 315:121534

    Article  CAS  Google Scholar 

  20. Hu L, Wang J, Wang H et al (2023) Gold-promoted electrodeposition of metal sulfides on silicon nanowire photocathodes to enhance solar-driven hydrogen evolution. ACS Appl Mater Interfaces 15(12):15449–15457

    Article  CAS  PubMed  Google Scholar 

  21. Pan Y, Wang M, Li M et al (2022) In-situ construction of N-doped carbon nanosnakes encapsulated FeCoSe nanoparticles as efficient bifunctional electrocatalyst for overall water splitting. J Energy Chem 68:699–708

    Article  CAS  Google Scholar 

  22. Chen S, Yang Z, Chen J et al (2022) Electron-rich interface of Cu-Co heterostructure nanoparticle as a cocatalyst for enhancing photocatalytic hydrogen evolution. Chem Eng J 434:134673

    Article  CAS  Google Scholar 

  23. Sun X, Habibul N, Du H (2021) Co0.85Se magnetic nanoparticles supported on carbon nanotubes as catalyst for hydrogen evolution reaction. Chin J Catal 42(1):235–243

    Article  CAS  Google Scholar 

  24. Wang C, Li Y, Gu C et al (2022) Active Co@CoO core/shell nanowire arrays as efficient electrocatalysts for hydrogen evolution reaction. Chem Eng J 429:132226

    Article  CAS  Google Scholar 

  25. Wang H, Jiao S, Liu S et al (2021) Mesoporous bimetallic Au@Rh core-shell nanowires as efficient electrocatalysts for pH-universal hydrogen evolution. ACS Appl Mater Interfaces 13(26):30479–30485

    Article  CAS  PubMed  Google Scholar 

  26. Zhong H, Wang T, Chen Y (2022) Understanding alkaline hydrogen evolution promoted by mesopores in three-dimensional graphene-like materials from perspective of capacitance effects. Carbon 199:13–22

    Article  CAS  Google Scholar 

  27. Li F, Wang C, Han X et al (2020) Confinement effect of mesopores: in situ synthesis of cationic tungsten-vacancies for a highly ordered mesoporous tungsten phosphide electrocatalyst. ACS Appl Mater Interfaces 12(20):22741–22750

    Article  CAS  PubMed  Google Scholar 

  28. Tian Z, Guo X, Wang D et al (2020) Enhanced charge carrier lifetime of TiS3 photoanode by introduction of S22- vacancies for efficient photoelectrochemical hydrogen evolution. Adv Funct Mater 30(21):2001286

    Article  CAS  Google Scholar 

  29. Yang M, Hu W-H, Li M-X et al (2022) Controlled high-density interface engineering of Fe3O4-FeS nanoarray for efficient hydrogen evolution. J Energy Chem 68:96–103

    Article  CAS  Google Scholar 

  30. Li K, Cen X, He JF et al (2023) Coupled W-Co2P hybrid nanosheets as a robust bifunctional electrocatalyst for hydrazine-assisted hydrogen production. Chem Commun 59(37):5575–5578

    Article  CAS  Google Scholar 

  31. Guo H, Wu A, Xie Y et al (2021) 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. Mater Chem A 9(13):8620–8629

    Article  CAS  Google Scholar 

  32. Cheng X, Tong Y (2023) Interface coupling of cobalt hydroxide/molybdenum disulfide heterostructured nanosheet arrays for highly efficient hydrazine-assisted hydrogen generation. ACS Sustain Chem Eng 11(8):3219–3227

    Article  CAS  Google Scholar 

  33. Feng D, Ye R, Tong Y et al (2023) Engineering cobalt molybdate nanosheet arrays with phosphorus-modified nickel as heterogeneous electrodes for highly-active energy-saving water splitting. Colloid Interface Sci 636:425–434

    Article  CAS  Google Scholar 

  34. Wang Z, Wang P, Zhang H et al (2021) Construction of hierarchical IrTe nanotubes with assembled nanosheets for overall water splitting electrocatalysis. Mater Chem A 9(34):18576–18581

    Article  CAS  Google Scholar 

  35. Feng D, Liu XY, Ye R et al (2023) Carbon-encapsulated Co2P/P-modified NiMoO4 hierarchical heterojunction as superior pH-universal electrocatalyst for hydrogen production. Colloid Interface Sci 634:693–702

    Article  CAS  Google Scholar 

  36. Yang B, Wei CG, Wang XH et al (2023) Optimization of hydrogen adsorption on W2C by late transition metal doping for efficient hydrogen evolution catalysis. Mater Today Nano 23:100350

    Article  CAS  Google Scholar 

  37. Ren Y, Miao X, Zhang J et al (2023) Post cobalt doping and defect engineering of NbSSe for efficient hydrogen evolution reaction. J Mater Chem A 11:2690–2697

    Article  CAS  Google Scholar 

  38. Liu T, Zhao X, Liu X et al (2023) Understanding the hydrogen evolution reaction activity of doped single-atom catalysts on two-dimensional Gaps4 by DFT and machine learning. J Energy Chem 81:93–100

    Article  CAS  Google Scholar 

  39. Zhou Y, Wu Y, Guo D et al (2023) Sulfur vacancy modulated nickel-doped Co4S3 hollow nanocube/nitrogen-doped V2ctx MXene nanosheet composites for optimizing the hydrogen evolution reaction. Mater Chem Front 7(2):306–314

    Article  CAS  Google Scholar 

  40. Tang J, Xu R, Sui G et al (2023) Double-shelled porous g-C3N4 nanotubes modified with amorphous Cu-doped FeOOH nanoclusters as 0D/3D non-homogeneous photo-fenton catalysts for effective removal of organic dyes. Small 22:2208232

    Article  Google Scholar 

  41. Wang C, Wang W, Guo W et al (2023) Liquid nitrogen quenching inducing lattice tensile strain to endow nitrogen/fluorine co-doping Fe3O4 nanocubes assembled on porous carbon with optimizing hydrogen evolution reaction. J Colloid Interface Sci 638:813–824

    Article  CAS  PubMed  Google Scholar 

  42. Bao W, Xiao L, Zhang J et al (2020) Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Chem Commun 56(65):9360–9363

    Article  CAS  Google Scholar 

  43. Zhao G, Jiang Y, Dou S-X et al (2021) Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci Bull 66(1):85–96

    Article  CAS  Google Scholar 

  44. Yang X, Wang Y, Yang X et al (2023) Lattice strain assisted with interface engineering for designing efficient CoSe2-CoO core-shell microspheres as promising electrocatalysts towards overall water splitting. Colloids Surf A Physicochem Eng Asp 663:131039

    Article  CAS  Google Scholar 

  45. Yu T, Xu Q, Luo L et al (2022) Interface engineering of NiO/RuO2 heterojunction nano-sheets for robust overall water splitting at large current density. Chem Eng J 430:133117

    Article  CAS  Google Scholar 

  46. Wu J, Wang X, Jiang J et al (2021) In-situ synthesis of MoS2/Co9S8 heterostructure for efficient HER electrocatalyst. Mater Lett 292:129621

    Article  CAS  Google Scholar 

  47. Chen R, Yao J, Gu Q et al (2013) A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for Co2 adsorption. Chem Commun 49(82):9500–9502

    Article  CAS  Google Scholar 

  48. Guan C, Xiao W, Wu H et al (2018) Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48:73–80

    Article  Google Scholar 

  49. Ahmad YH, Mohamed AT, Alashraf A et al (2020) Highly porous PtPd nanoclusters synthesized via selective chemical etching as efficient catalyst for ethanol electro-oxidation. Appl Surf Sci 508:145222

    Article  CAS  Google Scholar 

  50. Xu H, Shang H, Wang C et al (2020) Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord Chem Rev 418:213374

    Article  CAS  Google Scholar 

  51. Hang Z, Wang H, Ma M et al (2021) Integrating NiMoO wafer as a heterogeneous ‘turbo’for engineering robust Ru-based electrocatalyst for overall water splitting. Chem Eng J 420:127686

    Article  Google Scholar 

  52. Huang J, Jiang Y, An T et al (2020) Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. J Mater Chem A 8(48):25465–25498

    Article  CAS  Google Scholar 

  53. Zheng Y, Rong J, Xu J et al (2021) Accessible active sites activated by cobalt-doping into MoS2/NiS2 nanosheet array electrocatalyst for enhanced hydrogen evolution reaction. Appl Surf Sci 563:150385

    Article  CAS  Google Scholar 

  54. Wang J, Hu H, Zhang H et al (2021) Regulating the catalytically active sites in low-cost and earth-abundant 3d transition-metal-based electrode materials for high-performance zinc-air batteries. Energy Fuel 35(8):6483–6503

    Article  CAS  Google Scholar 

  55. Sun J, Huang Z, Huang T et al (2019) Defect-rich porous CoS1. 097/MoS2 hybrid microspheres as electrocatalysts for pH-universal hydrogen evolution. ACS Appl Energy Mater 2(10):7504–7511

    Article  CAS  Google Scholar 

  56. Xia Q, Zhao L, Zhang Z et al (2021) MnCo2S4-CoS1.097 heterostructure nanotubes as high efficiency cathode catalysts for stable and long-life lithium-oxygen batteries under high current conditions. Adv Sci 8(22):2103302

    Article  CAS  Google Scholar 

  57. Li Y, Mao Z, Wang Q et al (2020) Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem Eng J 390:124556

    Article  CAS  Google Scholar 

  58. Singh B, Murad L, Laffir F et al (2011) Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media. Nanoscale 3(8):3334–3349

    Article  CAS  PubMed  Google Scholar 

  59. Zhang H, Mei H, Qin D et al (2021) Conversion of amorphous MOF microspheres into a nickel phosphate battery-type electrode using the “anticollapse” two-step strategy. Inorg Chem 60(22):17094–17102

    Article  PubMed  Google Scholar 

  60. Tong H, Chen S, Yang P et al (2021) Cage-confinement pyrolysis strategy to synthesize hollow carbon nanocage-coated copper phosphide for stable and high-capacity potassium-ion storage. ACS Appl Mater Interfaces 13(44):52697–52705

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the NSF of China (22205125).

Author information

Authors and Affiliations

Authors

Contributions

Dongxuan Guo, Jinlong Li, and Dawei Chu planned the study and guided the whole project. Guozhe Sui organized the data and draw the figures. Muran Yu, Shengnan Na, and Daqing Li performed the experimental measurement of samples. Xiuna Yang performed the data analysis and wrote the manuscript.

Corresponding authors

Correspondence to Dongxuan Guo, Dawei Chu or Jinlong Li.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1008 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Sui, G., Guo, D. et al. Tungsten-doped cobalt sulfide/selendie as high-efficient electrocatalyst for outstanding overall water splitting. Ionics 29, 4115–4123 (2023). https://doi.org/10.1007/s11581-023-05128-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05128-2

Keywords

Navigation