Skip to main content

Advertisement

Log in

Ferrum-doped nickel selenide @tri-nickel diselenide heterostructure electrocatalysts with efficient and stable water splitting for hydrogen and oxygen production

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

To meet the increasing demand for clean energy, environmentally friendly and efficient transition metal selenides (TMSes) electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are being developed. There is an urgent need for a rational design of bifunctional non-precious metal catalysts with advanced structure and superior composition. In water splitting for the production of clean hydrogen energy, transition metal selenides have promising applications. We prepare a catalyst by a two-step hydrothermal method, and the crystal structure of the catalysts can be easily adjusted by adjusting the concentration of the selenizing agent; when the concentration of the selenizing agent (Na2SeO3) is 0.6 mmol, a phase transition occurred, forming the NiSe@Ni3Se2 heterostructure, reaching a current density of 10 mA cm−2 at an overpotential of 214 mV with a low Tafel slope of 41 mV dec−1. When the concentration of selenide is increased to 0.6 mmol, the prepared NiFeSe0.6-MOF (metal organic framework) demonstrates excellent HER performance. At 10 mA cm−2 current density, the overpotential is only 156 mV. Moreover, the monolithic hydrolysis electrolyzer assemble with NiFeSe0.6-MOF as the anode and cathode electrodes shows a low cell voltage of 1.7 V at a current density of 10 mA cm−2, and almost no attenuation is observed after a 72-h stability test. The excellent electrocatalytic performance of the prepared catalysts is attributed to the formation of nickel selenide heterostructures and the synergistic effect of two-dimensional ferrum-doped MOF, which provide abundant active sites. This study provides a good idea for the development of high activity and high stability catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. James CH, Robert BF, Cortland FE, Barbara JA (2022) Understanding coal quality and the critical importance of comprehensive coal analyses. Int J Coal Geol. https://doi.org/10.1016/j.coal.2022.104120

    Article  Google Scholar 

  2. Bilgen S (2016) The effects of chemical characteristics of coal on coal-based industry. Energy Sources A: Recovery Util Environ. https://doi.org/10.1080/15567036.2016.1141269.

  3. Ma May So K, Sabina Z, Piotr K (2022) Decomposition of microplastics: emission of harmful substances and greenhouse gases in the environment. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.109047

    Article  Google Scholar 

  4. Yongpeng M, Chuanxin H, Hideo K, Xiubo X, Huiyu J, Xueqin S, Xiaoyang Y, Yuping Z, Wei D (2023) Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00636-1

    Article  Google Scholar 

  5. Qin M, Ruilin L, Hideo K, Jincheng L, Huiyu J, Xiaoyu Z, Zhipeng Y, Xueqin S, Hassan A, Zhanhu G et al (2022) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00607-y

    Article  Google Scholar 

  6. Chuanxin H, Wenyue Y, Hideo K, Xiubo X, Xiaoyu Z, Xueqin S, Zhipeng Y, Xiaoyang Y, Yuping Z, Bin W et al (2022) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  Google Scholar 

  7. Yang W, Wang Z, Zhang W, Guo S (2019) Electronic-structure tuning of water-splitting nanocatalysts. Trends Chem. https://doi.org/10.1016/j.trechm.2019.03.006

    Article  Google Scholar 

  8. Xianxian X, Quan Z, Dehai Y (2022) The future of hydrogen energy: bio-hydrogen production technology. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.07.261

    Article  Google Scholar 

  9. Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.12.059

    Article  Google Scholar 

  10. Yurdakul M, Ayas N, Bizkarra K, El Doukkali M, Cambra JF (2016) Preparation of Ni-based catalysts to produce hydrogen from glycerol by steam reforming process. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2015.11.178

    Article  Google Scholar 

  11. Tentu RD, Basu S (2017) Photocatalytic water splitting for hydrogen production. Curr Opin Electrochem. https://doi.org/10.1016/j.coelec.2017.10.019

    Article  Google Scholar 

  12. Shindume LH, Zengying Z, Huiying H, Hala MA-D, Khamael MA, Abdullah KA, Melvin MM, Salah ME-B, Mina H, Zhanhu G (2022) Enhanced photocatalytic performance for hydrogen production and carbon dioxide reduction by a mesoporous single-crystal-like TiO2 composite catalyst. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00545-9

    Article  Google Scholar 

  13. Shatila S, Mao-Chia L, Md Robayet A, Yifan W, Ruigang W, Xinyu Z (2022) Direct growth of cobalt-doped molybdenum disulfide on graphene nanohybrids through microwave irradiation with enhanced electrocatalytic properties for hydrogen evolution reaction. Advanced Composites and Hybrid Materials. https://doi.org/10.1007/s42114-022-00424-3

    Article  Google Scholar 

  14. Niu M, Sui K, Wu X, Cao D, Liu C (2022) GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Adv Compos Hybrid Mater 5(1):450–460. https://doi.org/10.1007/s42114-021-00296-z

    Article  CAS  Google Scholar 

  15. Eqi M, Shi C, Xie J, Kang F, Qi H, Tan X, Huang Z, Liu J, Guo J (2022) Synergetic effect of Ni-Au bimetal nanoparticles on urchin-like TiO2 for hydrogen and arabinose co-production by glucose photoreforming. Adv Compos Hybrid Mater 6(1):5. https://doi.org/10.1007/s42114-022-00580-6

    Article  CAS  Google Scholar 

  16. Dang C, Mu Q, Xie X, Sun X, Yang X, Zhang Y, Maganti S, Huang M, Jiang Q, Seok I et al (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00500-8

    Article  Google Scholar 

  17. Li Z, Hu M, Wang P, Liu J, Yao J, Li C (2021) Heterojunction catalyst in electrocatalytic water splitting. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2021.213953

    Article  Google Scholar 

  18. Bu X, Li Y, Ho JC (2020) Efficient and stable electrocatalysts for water splitting. MRS Bull. https://doi.org/10.1557/mrs.2020.170

    Article  Google Scholar 

  19. Nagappan S, Dh HN, apani a, Karmakar A, Kundu S (2023) Recent advancement of 2D bi-metallic hydroxides with various strategical modification for the sustainable hydrogen production through water electrolysis. ES Mater Manuf 19:830. https://doi.org/10.30919/esmm5f830

    Article  CAS  Google Scholar 

  20. Pan X, Zheng Z, Zhang X, He X, An Y, Hao Y, Huang K, Lei M (2022) Multi-metallic nanosheets for high-performance hydrogen evolution reaction. Eng Sci 19:253–261. https://doi.org/10.30919/es8e708

    Article  CAS  Google Scholar 

  21. Zhao J, Bao K, Xie M, Wei D, Yang K, Zhang X, Zhang C, Wang Z, Yang X (2022) Two-dimensional ultrathin networked CoP derived from Co(OH)2 as efficient electrocatalyst for hydrogen evolution. Adv Compos Hybrid Mater 5(3):2421–2428. https://doi.org/10.1007/s42114-022-00455-w

    Article  CAS  Google Scholar 

  22. Jie Y, Jin L, Shiqi S, Xue L, Lei L, Chao W (2023) Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2022.11.063

    Article  Google Scholar 

  23. Wang H-F, Chen L, Pang H, Kaskel S, Xu Q (2020) MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev. https://doi.org/10.1039/c9cs00906j

    Article  Google Scholar 

  24. Wang H, Zhang C, Zhou B, Zhang Z, Shen J, Du A (2019) Ultra-black carbon@silica core-shell aerogels with controllable electrical conductivities. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-019-00123-6

    Article  Google Scholar 

  25. Ma Y, Xie X, Yang W, Yu Z, Sun X et al (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00358-2

    Article  Google Scholar 

  26. Lv Y, Wang X (2017) Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions. Catal Sci Technol. https://doi.org/10.1039/c7cy00715a

    Article  Google Scholar 

  27. Tareen AK, Priyanga GS, Khan K, Pervaiz E, Thomas T, Yang M (2019) Nickel-based transition metal nitride electrocatalysts for the oxygen evolution reaction. Chemsuschem. https://doi.org/10.1002/cssc.201900553

    Article  Google Scholar 

  28. Jiang X, Wang Y, Jia B, Qu X, Qin M (2022) Using machine learning to predict oxygen evolution activity for transition metal hydroxide electrocatalysts. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.2c13435

    Article  Google Scholar 

  29. Xu X, Song F, Hu X (2016) A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat Commun. https://doi.org/10.1038/ncomms12324

    Article  Google Scholar 

  30. Huakai X, Kebin L, Chuanhai J, Xiaofei W, Zhifei W, Yuguo O, Fangna D (2022) Electronic regulation of a core–shell NiSe2 catalyst by Co doping to accelerate hydrogen evolution. Cryst Eng Comm. https://doi.org/10.1039/d2ce01169g

    Article  Google Scholar 

  31. Chen Y, Gong S, Zhang Y, Li L, Wang Y, Tan X, Zhang L, Guo X, Lin X, Hu L (2022) Bimetallic MOF-derived ZnSe/NiSe heterostructures toward enhanced hydrogen evolution reactions. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2022.109587

    Article  Google Scholar 

  32. Wang X, He J, Yu B, Sun B, Yang D, Zhang X, Zhang Q, Zhang W, Gu L, Chen Y (2019) CoSe2 nanoparticles embedded MOF-derived Co-N-C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Appl Catal B. https://doi.org/10.1016/j.apcatb.2019.117996

    Article  Google Scholar 

  33. Wenchang Z, Minglin D, Xinhua L, Zhenyang C, Zijun H, Dognsheng L, Wenjing C, Lin T (2023) Fe doping modifying electronic structure of NiSe2 for boosting electrocatalytic oxygen evolution reaction. Ionics. https://doi.org/10.1007/s11581-022-04875-y

    Article  Google Scholar 

  34. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Xu BB, Algadi H, Pashameah RA et al (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  Google Scholar 

  35. Yiming Z, Liyuan L, Lanling Z, Chuanxin H, Meina H, Hassan A, Deyuan L, Qing X, Jun W, Zhaorui Z et al (2022) Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00535-x

    Article  Google Scholar 

  36. Anantharaj S, Ede SR, Karthick K, Sam Sankar S, Sangeetha K, Karthik PE, Kundu S (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci. https://doi.org/10.1039/c7ee03457a

    Article  Google Scholar 

  37. Jeghan SMN, Kim D, Lee Y, Kim  M, Lee G (2022) Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics. Appl Catal B: Environ. https://doi.org/10.1016/j.apcatb.2022.121221.

  38. Zhu J, Ni Y (2018). Phase-controlled synthesis and the phase-dependent HER and OER performances of nickel selenide nanosheets prepared by an electrochemical deposition routetio Cryst Eng Comm. https://doi.org/10.1039/c8ce00381e

    Article  Google Scholar 

  39. Li J, He Q, Lin Y, Han L, Tao K (2022) MOF-Derived Ironependent HER and OER performances of nickel selenide e naide naide nanide naide naenide n Reaction. Inorg Chem. https://doi.org/10.1021/acs.inorgchem.2c03676

    Article  Google Scholar 

  40. Huang J, Wen S, Chen G, Chen W, Wang G, Fan H, Chen D, Song C, Li M, Wang X et al (2020) Multiphase Ni-Fe-selenide nanosheets for highly-efficient and ultra-stable water electrolysis. Appl Catal B. https://doi.org/10.1016/j.apcatb.2020.119220

    Article  Google Scholar 

  41. Yang J, Cui N, Lu J, Han D, Shen J, Zhang Z, Qin L, Zhou B, Du A (2022) A facile and versatile post-treatment method to efficiently functionalize 3D-printed carbon aerogels via introducing tailored metal elements. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.2c02481

    Article  Google Scholar 

  42. Yongchao H, Zhongyuan G, Huiya C, Chenghao Y, Shuling C, Lizhi Y, Hao L (2023) Modulating the electronic structures of cobalt-organic frameworks for efficient electrocatalytic oxygen evolution. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2023.07.151

    Article  Google Scholar 

  43. Shun L, Likai T, Zhijian P, Bo Z, Xiuli F (2023) Novel high-entropy layered double hydroxide microspheres as an effective and durable electrocatalyst for oxygen evolution. Journal of Materials Chemistry A. https://doi.org/10.1039/d3ta01454a

    Article  Google Scholar 

  44. Shuangxiong L, Tieqi H, Weiying W, Ting Y, Qianqian H, Shangbin S, Kaiyu L, Yahui Y, Hongtao L (2023) Engineering high-entropy duel-functional nanocatalysts with regulative oxygen vacancies for efficient overall water splitting. Chem Eng J. https://doi.org/10.1016/j.cej.2023.144506

    Article  Google Scholar 

  45. Zhao Z, Lin Y, Wu J, Li J, Lei M (2022) Mixed-phase cobalt-based nanosheets prepared by rapid thermal annealing for oxygen evolution catalysis. Advanced Composites and Hybrid Materials 5(3):2589–2600. https://doi.org/10.1007/s42114-022-00537-9

    Article  CAS  Google Scholar 

  46. Zhang J, Cui B, Jiang S, Liu H, Dou M (2022) Construction of three-dimensional cobalt sulfide/multi-heteroatom co-doped porous carbon as an efficient trifunctional electrocatalyst. Nanoscale. https://doi.org/10.1039/d2nr01704k

    Article  Google Scholar 

  47. Xiaocong G, Chengguo W, Shuli W, Ligang F (2022) Cobalt fluoride/nitrogen-doped carbon derived from ZIF-67 for oxygen evolution reaction. Catal Commun. https://doi.org/10.1016/j.catcom.2021.106394

    Article  Google Scholar 

  48. Wang Y, Liu B, Shen X, Arandiyan H, Zhao T, Li Y, Garbrecht M, Su Z, Han L, Tricoli A et al (2021) Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv Energy Mater. https://doi.org/10.1002/aenm.202003759

    Article  Google Scholar 

  49. Shen JLH, Kong J (2021) Steel mesh reinforced Ni(OH)2 nanosheets with enhanced oxygen evolution reaction performance. ES Mater Manuf 14:79–86. https://doi.org/10.30919/esmm5f454

    Article  CAS  Google Scholar 

  50. Liang J, Gao X, Guo B, Ding Y, Yan J, Guo Z, Tse ECM, Liu J (2021) Ferrocene-based metaltal metaltal j. fernanosheets as a robust oxygen evolution catalyst. Angew Chem Int Ed. https://doi.org/10.1002/anie.202101878

    Article  Google Scholar 

  51. Gu K, Zhu X, Wang D, Zhang N, Huang G, Li W, Long P, Tian J, Zou Y, Wang Y et al (2021) Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation. J Energy Chem. https://doi.org/10.1016/j.jechem.2020.12.029

    Article  Google Scholar 

  52. Zhou W, Xue Z, Liu Q, Li Y, Hu J, Li G (2020) Trimetallic MOF-74 films grown on Ni foam as bifunctional electrocatalysts for overall water splitting. Chemsuschem. https://doi.org/10.1002/cssc.202001230

    Article  Google Scholar 

  53. Qian Z, Wang K, Shi K, Fu Z, Mai Z, Wang X, Tang Z, Tian Y (2020) Interfacial electron transfer of heterostructured MIL-88A/Ni(OH)2 enhances the oxygen evolution reaction in alkaline solutions. J Mater Chem A. https://doi.org/10.1039/c9ta12865d

    Article  Google Scholar 

  54. Xue Z, Liu K, Liu Q, Li Y, Li M, Su C-Y, Ogiwara N, Kobayashi H, Kitagawa H, Liu M et al (2019) Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat Commun. https://doi.org/10.1038/s41467-019-13051-2

    Article  Google Scholar 

  55. Huang H, Zhou S, Yu C, Huang H, Zhao J, Dai L, Qiu J (2019) Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy Environ Sci. https://doi.org/10.1039/c9ee03273h

    Article  Google Scholar 

  56. Hu Q, Huang X, Wang Z, Li G, Han Z, Yang H, Ren X, Zhang Q, Liu J, He C (2019) Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metaltorganic framework nanosheets to enable high-output oxygen evolution. J Mater Chem A. https://doi.org/10.1039/c9ta12713e

    Article  Google Scholar 

  57. Cui S, He Y, Bo X (2019) Prussian blue/ZIF-67-derived carbon layers-encapsulated FeCo nanoparticles for hydrogen and oxygen evolution reaction. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2019.113557

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the support of XPS and TEM tests.

Funding

The work is financially supported by the National Key R&D Program of China (Project No. 2021YFE0104700) and the Science and Technology Development Fund (STDF) of Egypt (Project No. 43149).

Author information

Authors and Affiliations

Authors

Contributions

ZhongKe Luo: background research, data compilation, writing—original draft; LongZhi Tong: data analysis, writing; Zhiping Lin: writing, data processing and analysis; R. S. Amin: investigation, original manuscript review; Junna Ren: investigation, formal analysis; K. M. El-Khatib: investigation, formal analysis; Chao Wang: experimental supervision.

Corresponding author

Correspondence to Chao Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6660 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Tong, L., Lin, Z. et al. Ferrum-doped nickel selenide @tri-nickel diselenide heterostructure electrocatalysts with efficient and stable water splitting for hydrogen and oxygen production. Adv Compos Hybrid Mater 6, 159 (2023). https://doi.org/10.1007/s42114-023-00737-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00737-x

Keywords

Navigation