Skip to main content

Advertisement

Log in

Facile synthesis of nickel diselenide particles for alkaline oxygen evolution by atmospheric pressure hydrothermal method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nickel-based selenides have attracted widespread attention as promising electrocatalysts for water splitting. This work proposes a novel and facile method to fabricate an efficient electrocatalyst based on morphological controlled nickel diselenide nanoparticles using L-cysteine (NiSe2-L) via atmospheric pressure hydrothermal. The NiSe2-L was prepared inside a round-bottom flask under stirring conditions in an oil bath at 100 ℃ for 4 h. This method no longer required posttreatment, just used L-cysteine for morphological control, and the reaction time was shortened to only 4 h. As expected, the NiSe2-L electrode exhibited good catalytic performance towards oxygen evolution reaction (OER) with an overpotential of 398 mV at the current density of 100 mA cm−2 and maintained a Faraday efficiency of up to 99% in 1 M KOH. Moreover, this electrode showed long-term stability with small overpotential increases (~ 16 mV) at 100 mA cm−2 after 5000 cycles of CV scans. Therefore, this work provided a facile synthesis method of nickel-based selenides with potential use value for OER in alkaline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Esmailzadeh S, Shahrabi T, BaratiDarband G, Yaghoubinezhad Y (2020) Pulse electrodeposition of nickel selenide nanostructure as a binder-free and high-efficient catalyst for both electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution. Electrochimica Acta 334:135549. https://doi.org/10.1016/j.electacta.2019.135549

    Article  CAS  Google Scholar 

  2. Wang G, Chen W, Chen G, Huang J, Song C, Chen D, Du Y, Li C, Ostrikov KK (2020) Trimetallic Mo–Ni–Co selenides nanorod electrocatalysts for highly-efficient and ultra-stable hydrogen evolution. Nano Energy 71:104637. https://doi.org/10.1016/j.nanoen.2020.104637

    Article  CAS  Google Scholar 

  3. Yang H, Huang Y, Teoh WY, Jiang L, Chen W, Zhang L, Yan J (2020) Molybdenum selenide nanosheets surrounding nickel selenides sub-microislands on nickel foam as high-performance bifunctional electrocatalysts for water splitting. Electrochim Acta 349:136336. https://doi.org/10.1016/j.electacta.2020.136336

    Article  CAS  Google Scholar 

  4. Song J, Wei C, Huang Z-F, Liu C, Zeng L, Wang X, Xu ZJ (2020) A review on fundamentals for designing oxygen evolution electrocatalysts. Chem Soc Rev 49(7):2196–2214. https://doi.org/10.1039/C9CS00607A

    Article  CAS  Google Scholar 

  5. Zhang L, Wang Q, Li L, Banis MN, Li J, Adair K, Sun Y, Li R, Zhao Z-J, Gu M, Sun X (2022) Single atom surface engineering: a new strategy to boost electrochemical activities of Pt catalysts. Nano Energy 93:106813. https://doi.org/10.1016/j.nanoen.2021.106813

    Article  CAS  Google Scholar 

  6. Lin C, Li J-L, Li X, Yang S, Luo W, Zhang Y, Kim S-H, Kim D-H, Shinde SS, Li Y-F, Liu Z-P, Jiang Z, Lee J-H (2021) In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat Catal 4(12):1012–1023. https://doi.org/10.1038/s41929-021-00703-0

    Article  CAS  Google Scholar 

  7. Zheng Y-R, Vernieres J, Wang Z, Zhang K, Hochfilzer D, Krempl K, Liao T-W, Presel F, Altantzis T, Fatermans J, Scott SB, Secher NM, Moon C, Liu P, Bals S, Van Aert S, Cao A, Anand M, Nørskov JK, Kibsgaard J, Chorkendorff I (2022) Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nat Energy 7(1):55–64. https://doi.org/10.1038/s41560-021-00948-w

    Article  CAS  Google Scholar 

  8. Huang Z, Yuan S, Zhang T, Cai B, Xu B, Lu X, Fan L, Dai F, Sun D (2020) Selective selenization of mixed-linker Ni-MOFs: NiSe2@NC core-shell nano-octahedrons with tunable interfacial electronic structure for hydrogen evolution reaction. Appl Catal B 272:118976. https://doi.org/10.1016/j.apcatb.2020.118976

    Article  CAS  Google Scholar 

  9. Ede SR, Luo Z (2021) Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review. J Mater Chem A 9(36):20131–20163. https://doi.org/10.1039/D1TA04032D

    Article  CAS  Google Scholar 

  10. Gao L, Cui X, Sewell CD, Li J, Lin Z (2021) Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem Soc Rev 50(15):8428–8469. https://doi.org/10.1039/D0CS00962

    Article  CAS  Google Scholar 

  11. Huang Y, Jiang L-W, Shi B-Y, Ryan KM, Wang J-J (2021) Highly efficient oxygen evolution reaction enabled by phosphorus doping of the Fe electronic structure in iron–nickel selenide nanosheets. Adv Sci 8(18):2101775. https://doi.org/10.1002/advs.202101775

    Article  CAS  Google Scholar 

  12. Han MH, Pin MW, Koh JH, Park JH, Kim J, Min BK, Lee WH, Oh H-S (2021) Improving the oxygen evolution reaction using electronic structure modulation of sulfur-retaining nickel-based electrocatalysts. J Mater Chem A 9(47):27034–27040. https://doi.org/10.1039/D1TA07591H

    Article  CAS  Google Scholar 

  13. Yi X, He X, Yin F, Chen B, Li G, Yin H (2020) Amorphous Ni–Fe–Se hollow nanospheres electrodeposited on nickel foam as a highly active and bifunctional catalyst for alkaline water splitting. Dalton Trans 49(20):6764–6775. https://doi.org/10.1039/C9DT04755G

    Article  CAS  Google Scholar 

  14. Feng Y, Wang S, Wang H, Zhong Y, Hu Y (2020) An efficient and stable Ni–Fe selenides/nitrogen-doped carbon nanotubes in situ-derived electrocatalyst for oxygen evolution reaction. J Mater Sci 55(28):13927–13937. https://doi.org/10.1007/s10853-020-05002-w

    Article  CAS  Google Scholar 

  15. Saxena A, Liyanage WPR, Kapila S, Nath M (2022) Nickel selenide as an efficient electrocatalyst for selective reduction of carbon dioxide to carbon-rich products. Catal Sci Technol 12(15):4727–4739. https://doi.org/10.1039/d2cy00583b

    Article  CAS  Google Scholar 

  16. Xiong P, Ao X, Chen J, Li J-G, Lv L, Li Z, Zondode M, Xue X, Lan Y, Wang C (2019) Nickel diselenide nanoflakes give superior urea electrocatalytic conversion. Electrochim Acta 297:833–841. https://doi.org/10.1016/j.electacta.2018.12.043

    Article  CAS  Google Scholar 

  17. Zhang F, Pei Y, Ge Y, Chu H, Craig S, Dong P, Cao J, Ajayan PM, Ye M, Shen J (2018) Controlled synthesis of eutectic NiSe/Ni3Se2 self-supported on Ni foam: an excellent bifunctional electrocatalyst for overall water splitting. Adv Mater Interfaces 5(8):1701507. https://doi.org/10.1002/admi.201701507

    Article  CAS  Google Scholar 

  18. Ramakrishnan P, Jo S, Pitipuech N, Sohn JI (2020) Bifunctionality behavior of phase controlled nickel selenides in alkaline water electrolysis application. Electrochim Acta 354:136742. https://doi.org/10.1016/j.electacta.2020.136742

    Article  CAS  Google Scholar 

  19. Chang J, Wang G, Yang Z, Li B, Wang Q, Kuliiev R, Orlovskaya N, Gu M, Du Y, Wang G, Yang Y (2021) Dual-doping and synergism toward high-performance seawater electrolysis. Adv Mater 33(33):2101425. https://doi.org/10.1002/adma.202101425

    Article  CAS  Google Scholar 

  20. Esmailzadeh S, Shahrabi T, Yaghoubinezhad Y, BaratiDarband G (2021) Optimization of nickel selenide for hydrogen and oxygen evolution reactions by response surface methodology. J Colloid Interface Sci 600:324–337. https://doi.org/10.1016/j.jcis.2021.05.003

    Article  CAS  Google Scholar 

  21. Tan L, Yu J, Wang H, Gao H, Liu X, Wang L, She X, Zhan T (2022) Controllable synthesis and phase-dependent catalytic performance of dual-phase nickel selenides on Ni foam for overall water splitting. Appl Catal B 303:120915. https://doi.org/10.1016/j.apcatb.2021.120915

    Article  CAS  Google Scholar 

  22. Sobhani A, Salavati-Niasari M (2021) Transition metal selenides and diselenides: hydrothermal fabrication, investigation of morphology, particle size and and their applications in photocatalyst. Adv Coll Interface Sci 287:102321. https://doi.org/10.1016/j.cis.2020.102321

    Article  CAS  Google Scholar 

  23. Sharifi E, Shams E, Salimi A, Noorbakhsh A, Amini MK (2018) Nickel-cysteine nanoparticles: synthesis, characterization and application for direct electron transfer studies. Colloids Surf, B 165:135–143. https://doi.org/10.1016/j.colsurfb.2018.01.052

    Article  CAS  Google Scholar 

  24. Di Y, Ma C, Fu Y, Dong X, Liu X, Ma H (2021) Engineering cationic sulfur-doped Co3O4 architectures with exposing high-reactive (112) facets for photoelectrocatalytic water purification. ACS Appl Mater Interfaces 13(7):8405–8416. https://doi.org/10.1021/acsami.0c20353

    Article  CAS  Google Scholar 

  25. Siddiqui S, Niazi JH, Qureshi A (2021) Mn3O4–Au nanozymes as peroxidase mimic and the surface-enhanced Raman scattering nanosensor for the detection of hydrogen peroxide. Mater Today Chem 22:100560. https://doi.org/10.1016/j.mtchem.2021.100560

    Article  CAS  Google Scholar 

  26. Oluwafemi SO, Revaprasadu N, Ramirez AJ (2008) A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. J Cryst Growth 310(13):3230–3234. https://doi.org/10.1016/j.jcrysgro.2008.03.032

    Article  CAS  Google Scholar 

  27. Burford N, Eelman MD, Mahony DE, Morash M (2003) Definitive identification of cysteine and glutathione complexes of bismuth by mass spectrometry: assessing the biochemical fate of bismuth pharmaceutical agents. Chem Commun (1):146–147. https://doi.org/10.1039/B210570E

  28. Xiong S, Xi B, Wang C, Zou G, Fei L, Wang W, Qian Y (2007) Shape-controlled synthesis of assistance synthesis of 3D and 1D structures of CdS in a binary solution with L-cysteine’s. Chem A Euro J 13:3076–3081. https://doi.org/10.1002/chem.200600786.

    Article  CAS  Google Scholar 

  29. Zuo F, Yan S, Zhang B, Zhao Y, Xie Y (2008) L-cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures. J Phys Chem C 112(8):2831–2835. https://doi.org/10.1021/jp0766149

    Article  CAS  Google Scholar 

  30. Jeghan SMN, Lee G (2020) One-dimensional hierarchical nanostructures of NiCo2O4, NiCo2S4 and NiCo2Se4 with superior electrocatalytic activities toward efficient oxygen evolution reaction. Nanotechnology 31(29):295405. https://doi.org/10.1088/1361-6528/ab8667

    Article  CAS  Google Scholar 

  31. Peng H, Wei C, Wang K, Meng T, Ma G, Lei Z, Gong X (2017) Ni0.85Se@MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. ACS Appl Mater Interfaces 9(20):17067–17075. https://doi.org/10.1021/acsami.7b02776.

    Article  CAS  Google Scholar 

  32. Qu G, Zhang X, Xiang G, Wei Y, Yin J, Wang Z, Zhang X, Xu X (2020) ZIF-67 derived hollow Ni-Co-Se nano-polyhedrons for flexible hybrid supercapacitors with remarkable electrochemical performances. Chin Chem Lett 31(7):2007–2012. https://doi.org/10.1016/j.cclet.2020.01.040

    Article  CAS  Google Scholar 

  33. van der Heide H, Hemmel R, van Bruggen CF, Haas C (1980) X-ray photoelectron spectra of 3d transition metal pyrites. J Solid State Chem 33(1):17–25. https://doi.org/10.1016/0022-4596(80)90543-5

    Article  Google Scholar 

  34. Lian KK, Kirk DW, Thorpe SJ (1995) Investigation of a “two-state” Tafel phenomenon for the oxygen evolution reaction on an amorphous Ni-Co alloy. J Electrochem Soc 142(11):3704–3712. https://doi.org/10.1149/1.2048402

    Article  CAS  Google Scholar 

  35. Mansour AN, Melendres CA (1994) Characterization of electrochemically prepared γ-NiOOH by XPS. Surf Sci Spectra 3(3):271–278. https://doi.org/10.1116/1.1247756

    Article  CAS  Google Scholar 

  36. Chen Y, Ren Z, Fu H, Zhang X, Tian G, Fu H (2018) NiSe-Ni0.85 Se heterostructure nanoflake arrays on carbon paper as efficient electrocatalysts for overall water splitting. Small 14(25):1800763

    Article  Google Scholar 

  37. Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7(11):3519–3542. https://doi.org/10.1039/C4EE01760A

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support provided by National Natural Science Foundation of China (NO. 21673167), the open project of Hubei Key Laboratory of New Textile Materials and Applications (No. FZXCL202110), and the start-up fund of Wuhan Textile University (NO. 20200630 and 20200828).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Li or Haifeng Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2723 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Li, C., Li, N. et al. Facile synthesis of nickel diselenide particles for alkaline oxygen evolution by atmospheric pressure hydrothermal method. Ionics 29, 313–322 (2023). https://doi.org/10.1007/s11581-022-04807-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04807-w

Keywords

Navigation