Skip to main content
Log in

Iron oxide/PAMAM nanostructured hybrids: combined computational and experimental studies

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent studies in the field of iron oxide–dendrimer hybrids showed an increased potential of these materials to be used in diagnosis, monitoring, targeting, and therapy of cancer. The aim of this paper is to investigate the nature of interactions between iron oxide nanoparticles and polyamidoamine (PAMAM) dendrimers using computational and experimental techniques, namely molecular dynamics (MD) and electron paramagnetic resonance (EPR). Hybrid nanostructures based on iron oxide and PAMAM dendrimers were prepared in one-step synthesis route, using hydrothermal method at high pressure (40–100 atm). The interaction between dendrimers and iron oxide nanoparticles was predicted at specific temperature, pH, and pressure conditions. The same conditions were applied for hydrothermal synthesis. High-resolution transmission electron microscopy revealed the formation of magnetite (MAG) through hydrothermal reaction at 100 atm, starting only from iron (III) chloride. A possible explanation could be the variation of the fugacity value of oxygen under high-pressure conditions, which leads to diffusion-controlled reaction and to transformation of haematite into MAG. EPR parameter, namely linewidth, was exploited to evaluate the type of interactions from iron oxide–PAMAM hybrids, due to its dependence on spin–spin relaxation time and spin–lattice interactions. As a conclusion, MD indicated the existence of electrostatic interactions between PAMAM and iron oxide. In accordance with in silico results, EPR analysis suggested that MAG is not entrapped in PAMAM structure and the interactions between organic and inorganic components take place at dendrimer’s surface. A good agreement between MD simulations and experimental results was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R et al (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12:39–50

    Article  Google Scholar 

  2. Darroudi M, Hakimi M, Goodarzi E, Oskuee RK (2014) Superparamagnetic iron oxide nanoparticles (SPIONs): green preparation, characterization and their cytotoxicity effects. Ceram Int 40:14641–14645

    Article  Google Scholar 

  3. Popescu LM, Piticescu RM, Stoiciu M, Vasile E, Trusca R (2012) Investigation of thermal behaviour of hybrid nanostructures based on Fe2O3 and PAMAM dendrimers. J Therm Anal Calorim 110:357–362

    Article  Google Scholar 

  4. Zhang DW, Chen CH, Zhang J, Ren F (2007) Fabrication of nanosized metallic copper by electrochemical milling process. J Mater Sci 43:1492–1496. doi:10.1007/s10853-007-2274-6

    Article  Google Scholar 

  5. Lu S, Jiang Y, Wei C (2009) Preparation and characterization of EP/SiO2 hybrid materials containing PEG flexible chain. J Mater Sci 44:4047–4055. doi:10.1007/s10853-009-3584-7

    Article  Google Scholar 

  6. Popescu LM, Piticescu RM, Rusti CF, Maly M, Danani A, Kintzios S, Grinan MTV (2011) Preparation and characterization of new hybrid nanostructured thin films for biosensors design. Mater Lett 65:2032–2035

    Article  Google Scholar 

  7. Tajabadi M, Khosroshahi ME, Bonakdar S (2013) An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids Surf A 431:18–26

    Article  Google Scholar 

  8. Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME et al (2008) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv Mater 20:1671–1678

    Article  Google Scholar 

  9. Jang WD, Kamruzzaman Selim KM, Lee CH, Kang IK (2009) Bioinspired application of dendrimers: from bio-mimicry to biomedical applications. Prog Polym Sci 34:1–23

    Article  Google Scholar 

  10. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 57:2106–2129

    Article  Google Scholar 

  11. Sekowski S, Buczkowski A, Palecz B, Gabryelak T (2011) Interaction of polyamidoamine (PAMAM) succinamic acid dendrimers generation 4 with human serum albumin. Spectrochim Acta A 81:706–710

    Article  Google Scholar 

  12. Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T (2001) Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater 13:2201–2209

    Article  Google Scholar 

  13. Pavan GM, Posocco P, Tagliabue A, Maly M, Malek A, Danani A et al (2010) PAMAM dendrimers for siRNA delivery: computational and experimental insights. Chemistry 16:7781–7795

    Article  Google Scholar 

  14. Pavan GM, Monteagudo S, Guerra J, Carrion B, Ocana V, Rodriguez-Lopez J et al (2012) Role of generation, architecture, pH and ionic strength on successful siRNA delivery and transfection by hybrid PPV-PAMAM dendrimers. Curr Med Chem 19:4929–4941

    Article  Google Scholar 

  15. Jensen LB, Pavan GM, Kasimova MR, Rutherford S, Danani A, Nielsen HM et al (2011) Elucidating the molecular mechanism of PAMAM-siRNA dendriplex self-assembly: effect of dendrimer charge density. Int J Pharm 416:410–418

    Article  Google Scholar 

  16. Pavan GM, Albertazzi L, Danani A (2010) Ability to adapt: different generations of PAMAM dendrimers show different behaviors in binding siRNA. J Phys Chem B 114:2667–2675

    Article  Google Scholar 

  17. Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2:1596–1610

    Article  Google Scholar 

  18. Shi X, Wang SH, Lee I, Shen M, Baker JR (2009) Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells. Biopolymers 91:936–942

    Article  Google Scholar 

  19. Shi X, Lee I, Chen X, Shen M, Xiao S, Zhu M et al (2010) Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers. Soft Matter 6:2539–2545

    Article  Google Scholar 

  20. Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R et al (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67:8156–8163

    Article  Google Scholar 

  21. Wang SH, Shi X, Van Antwerp M, Cao Z, Swanson SD, Bi X et al (2007) Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv Funct Mater 17:3043–3050

    Article  Google Scholar 

  22. Cheng Y (2012) Dendrimer-based drug delivery systems: from theory to practice, 1st edn. Wiley, Hoboken

    Book  Google Scholar 

  23. Krzyminiewski R, Kubiak T, Dobosz B, Schroeder G, Kurczewska J (2014) EPR spectroscopy and imaging of TEMPO-labeled magnetite nanoparticles. Curr Appl Phys 14:798–804

    Article  Google Scholar 

  24. Apicella A, Soncini M, Deriu MA, Natalello A, Bonanomi M, Dellasega D et al (2013) A hydrophobic gold surface triggers misfolding and aggregation of the amyloidogenic Josephin domain in monomeric form, while leaving the oligomers unaffected. PLoS One 8:e58794

    Article  Google Scholar 

  25. Deriu MA, Grasso G, Licandro G, Danani A, Gallo D, Tuszynski JA et al (2014) Investigation of the Josephin domain protein-protein interaction by molecular dynamics. PLoS One 9:e108677

    Article  Google Scholar 

  26. Paciello G, Acquaviva A, Ficarra E, Deriu MA, Macii E (2011) A molecular dynamics study of a miRNA: mRNA interaction. J Mol Model 17:2895–2906

    Article  Google Scholar 

  27. Maingi V, Jain V, Bharatam PV, Maiti PK (2012) Dendrimer building toolkit: model building and characterization of various dendrimer architectures. J Comput Chem 33:1997–2011

    Article  Google Scholar 

  28. Pavan GM, Mintzer MA, Simanek EE, Merkel OM, Kissel T, Danani A (2010) Computational insights into the interactions between DNA and siRNA with “rigid” and “flexible” triazine dendrimers. Biomacromolecules 11:721–730

    Article  Google Scholar 

  29. Mandal T, Dasgupta C, Maiti PK (2013) Engineering gold nanoparticle interaction by PAMAM dendrimer. J Phys Chem C 117:13627–13636

    Article  Google Scholar 

  30. Karatasos K, Posocco P, Laurini E, Pricl S (2012) Poly(amidoamine)-based dendrimer/siRNA complexation studied by computer simulations: effects of pH and generation on dendrimer structure and siRNA binding. Macromol Biosci 12:225–240

    Article  Google Scholar 

  31. Maingi V, Kumar MVS, Maiti PK (2012) PAMAM dendrimer-drug interactions: effect of pH on the binding and release pattern. J Phys Chem B 116:4370–4376

    Article  Google Scholar 

  32. Mukherjee G, Patra N, Barua P, Jayaram B (2011) A fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small molecules with biomolecular targets. J Comput Chem 32:893–907

    Article  Google Scholar 

  33. Sousa da Silva AW, Vranken WF (2012) ACPYPE—antechamber python parser interface. BMC Res Notes 5:367

    Article  Google Scholar 

  34. Dupradeau FY, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N et al (2010) The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys 12:7821–7839

    Article  Google Scholar 

  35. Cezard C, Vanquelef E, Pecher J, Sonnet P (2008) RESP charge derivation and force field topology database generation for complex bio-molecular systems and analogs. In: 236th ACS National Meeting

  36. Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC et al (2011) R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39:W511–W517

    Article  Google Scholar 

  37. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  Google Scholar 

  38. Cygan RT, Liang JJ, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108:1255–1266

    Article  Google Scholar 

  39. Gale JD (1997) GULP: a computer program for the symmetry-adapted simulation of solids. J Chem Soc Faraday Trans 93:629–637

    Article  Google Scholar 

  40. Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol Simul 29:291–341

    Article  Google Scholar 

  41. Gale J (2005) GULP: capabilities and prospects. Zeitschrift Für Krist 220:552–554

    Google Scholar 

  42. Rappé AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363

    Article  Google Scholar 

  43. Müller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. Chemical 3:754–769

    Google Scholar 

  44. Reith D, Pütz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624–1636

    Article  Google Scholar 

  45. Cheng CP, Yang LW (2008) Coarse-grained models reveal functional dynamics–II. Molecular dynamics simulation at the coarse-grained level–theories and biological applications. Bioinform Biol Insights 2:171–185

    Google Scholar 

  46. Deriu MA, Shkurti A, Paciello G, Bidone TC, Morbiducci U, Ficarra E et al (2012) Multiscale modeling of cellular actin filaments: from atomistic molecular to coarse-grained dynamics. Proteins 80:1598–1609

    Article  Google Scholar 

  47. Leroch S, Wendland M (2012) Simulation of forces between humid amorphous silica surfaces: a comparison of empirical atomistic force fields. J Phys Chem C 116:26247–26261

    Article  Google Scholar 

  48. Bürger A, Magdans U, Gies H (2013) Adsorption of amino acids on the magnetite-(111)-surface: a force field study. J Mol Model 19:851–857

    Article  Google Scholar 

  49. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  Google Scholar 

  50. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  Google Scholar 

  51. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  Google Scholar 

  52. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  53. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  54. Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 16:273–284

    Article  Google Scholar 

  55. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962

    Article  Google Scholar 

  56. Chaplin M (2015) Physical anomalies of water. http://www.lsbu.ac.uk/water/physical_anomalies.html. Accessed 29 May 2015

  57. Goeke E (2011) Mineralogy: magnetite & hematite—minerals of the week #2. https://lifeinplanelight.wordpress.com/2011/02/28/mineralogy-magnetite-hematite-minerals-of-the-week-2/. Accessed 19 May 2015

  58. Chaplin M (2015) Water ionization, the ionic product (Kw) of water and pH. http://www.lsbu.ac.uk/water/water_dissociation.html. Accessed 19 May 2015

  59. Imreh I (1987) Geochimie. Editura Dacia, Cluj-Napoca

    Google Scholar 

  60. Matthews A (1976) Magnetite formation by reduction of hematite with iron under hydrothermal conditions. Am Mineral 61:927–932

    Google Scholar 

  61. Chaplin M (2015) Material anomalies of water. http://www.lsbu.ac.uk/water/material_anomalies.html. Accessed 19 May 2015

  62. Castner T, Newell GS, Holton WC, Slichter CP (1960) Note on the paramagnetic resonance of iron in glass. J Chem Phys 32:668

    Article  Google Scholar 

  63. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, Oxford

    Google Scholar 

  64. Barklie RC, Collins M, Silva SRP (2000) EPR linewidth variation, spin relaxation times, and exchange in amorphous hydrogenated carbon. Phys Rev B 61:3546–3554

    Article  Google Scholar 

  65. Maiti PK, Çagın T, Wang G, Goddard WA (2004) Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 37:6236–6254

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Project co-financed by a Grant from Switzerland (Ctr. IZERZ0–No.142141 and Ctr. 4/RO-CH/RSRP/2012) through the Swiss contribution to the enlarged European Union is gratefully acknowledged. The authors also thank the COST Action MP1202 and Dr. Eugeniu Vasile, University Politehnica of Bucharest, for performing HRTEM analysis. The authors from National R&D Institute for Nonferrous and Rare Metals, Romania, used the infrastructure purchased in the frame of Structural Funds Project-HighPTMet (ctr.253/28.09.2010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Danani or Roxana Mioara Piticescu.

Additional information

Marco Agostino Deriu and Laura Madalina Popescu have equally contributed to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deriu, M.A., Popescu, L.M., Ottaviani, M.F. et al. Iron oxide/PAMAM nanostructured hybrids: combined computational and experimental studies. J Mater Sci 51, 1996–2007 (2016). https://doi.org/10.1007/s10853-015-9509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9509-8

Keywords

Navigation