Skip to main content
Log in

Investigation of thermal behaviour of hybrid nanostructures based on Fe2O3 and PAMAM dendrimers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dendrimers or biofunctionalized dendrimers can be assembled onto magnetic iron oxide nanoparticles to stabilize or functionalize inorganic nanoparticles. Carboxylated poly(amidoamine) PAMAM dendrimers (generation 4.5) have been used for the synthesis of iron oxide nanoparticles, resulting nanocomposites with potential biomedical applications. The present paper aims to systematically investigate the thermal behaviour of nanostructured hybrids based on ferric oxide and PAMAM dendrimers, by differential scanning calorimetry (DSC) technique. The novelty consists both in synthesis procedure of hybrid nanostructures as well as in DSC approach of these nanocomposites. For the first time, we propose a new method to prepare Fe2O3—dendrimer nanocomposite, using soft chemical process at high pressure. Commercial PAMAM dendrimers with carboxylic groups on its surface were used. When high pressure is applied, polymeric structures suffer morphological changes leading to hybrid nanostructures' formation. In the same time, crystallinity of inorganic nanoparticles is provided. DSC results showed an increase in thermal stability of composites as compared to commercial dendrimers. This could be due to the formation of strong interactions between ferric oxide and carboxyl groups, as confirmed by Fourier transform infrared spectroscopy. Electron microscopy analysis (SEM/EDX) and size measurements were performed to demonstrate the existence of nanosized particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. da Silva Santos JL. Functionalization of dendrimers for improved gene delivery to mesenchymal stem cells. PhD Thesis, University of Madeira; (2009).

  2. Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, Ding H, Patil R, Portilla-Arias JA, Modo M, Moore DF, Farahani K, Okun MS, Prakash N, Neman J, Ahdoot D, Grundfest W, Nikzad S, Heiss JD. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy? NeuroImage. 2011;54:S106–24.

    Article  Google Scholar 

  3. Sakamoto JH, van de Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu T, Ranganathan SI, De Rosa E, Martinez JO, Smid CA, Buchanan RM, Lee S-Y, Srinivasan S, Landry M, Meyn A, Tasciotti E, Liu X, Decuzzi P, Ferrari M. Enabling individualized therapy through nanotechnology. Pharmacol Res. 2010;62:57–89.

    Article  CAS  Google Scholar 

  4. Balogh L, Bielinska A, Eichman JD, Valluzzi R, Lee I, Baker JR, Lawrence TS, Khan MK. Dendrimer nanocomposites in medicine. Chem Today. 2002;20:35–40.

    CAS  Google Scholar 

  5. Barrett T, Ravizzini G, Choyke PL, Kobayashi H. Dendrimers in medical nanotechnology. Application of dendrimer molecules in bioimaging and cancer treatment. IEEE Eng Med Biol Mag. 2009;28:12–22.

    Article  Google Scholar 

  6. Tomalia DA. Dendrimers: key properties of importance to nanomedicine. Nanomedicine. 2006;2:307.

    Google Scholar 

  7. Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T. Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater. 2001;13:2201–9.

    Article  CAS  Google Scholar 

  8. Saboktakin MR, Maharramov A, Ramazanov MA. Synthesis and characterization of MRI-detectable magnetic dendritic nanocarriers. Polym Plast Technol Eng. 2010;49:104–9.

    Article  CAS  Google Scholar 

  9. Liu S, Lin Q, Zhang X, He X, Xing X, Lian W, Huang J. Electrochemical immunosensor for salbutamol detection based on CS–Fe3O4–PAMAM–GNPs nanocomposites and HRP_MWCNTs–Ab bioconjugates for signal amplification. Sens Actuators B. 2011;156:71–8.

    Article  Google Scholar 

  10. Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15:171–85.

    Article  CAS  Google Scholar 

  11. Mishra MK, Kotta K, Hali M, Wykes S, Gerard HC, Hudson AP, Whittum-Hudson JA, Kannan RM. PAMAM dendrimers-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomed Nanotechnol Biol Med. 2011;7:935–44.

    Article  CAS  Google Scholar 

  12. Tse C, Zohdy MJ, Ye JY, O’Donnell M, Lesniak W, Balogh L. Enhanced optical breakdown in KB cells labelled with folate-targeted silver-dendrimer composite nanodevices. Nanomed Nanotechnol Biol Med. 2011;7:97–106.

    Article  CAS  Google Scholar 

  13. Sekhon BS, Kamboj SR. Inorganic nanomedicine–part 2. Nanomed Nanotechnol Biol Med. 2010;6:612–8.

    Article  CAS  Google Scholar 

  14. Gaur MS, Rathore BS, Singh PK, Indolia A, Awasthi AM, Bhardwaj S. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites. J Therm Anal Calorim. 2010;101:315–21.

    Article  CAS  Google Scholar 

  15. Lagashetty A, Vijayanand H, Basavaraja S, Bedre MD, Venkataraman A. Preparation, characterization, and thermal studies of γ-Fe2O3 and CuO dispersed polycarbonate nanocomposites. J Therm Anal Calorim. 2010;99:577–81.

    Article  CAS  Google Scholar 

  16. Chang YL, Meng XL, Zhao YL, Li K, Zhao B, Zhu M, Li YP, Chen XS, Wang JY. Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin–PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J Colloid Interface Sci. 2011;363:403–9.

    Article  CAS  Google Scholar 

  17. Baykal A, Toprak MS, Durmus Z, Senel M, Sozeri H, Demir A. Synthesis and characterization of dendrimer-encapsulated iron and iron-oxide nanoparticles. J Supercond Nov Magn. doi:10.1007/s10948-012-1454-z (published online: 09 February 2012).

  18. Zhang Y, Liu J-Y, Yang F, Zhang Y-J, Yao Q, Cui T-Y, Zhao X, Zhang Z-D. A new strategy for assembling multifunctional nanocomposites with iron oxide and amino-terminated PAMAM dendrimers. J Mater Sci Mater Med. 2009;20:2433–40.

    Article  CAS  Google Scholar 

  19. Shi XY, Thomas TP, Myc LA, Kotlyar A, Baker JR Jr. Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys. 2007;9:5712–20.

    Article  CAS  Google Scholar 

  20. Wang SH, Shi XY, Van Antwerp M, Cao Z, Swanson SD, Bi XD, Baker JR Jr. Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv Funct Mater. 2007;17:3043–50.

    Article  CAS  Google Scholar 

  21. Landmark KJ, DiMaggio S, Ward J, Kelly C, Vogt S, Hong S, Kotlyar A, Myc A, Thomas TP, Penner-Hahn JE, Baker JR, Banaszak Holl MM, Orr BG. Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic acid-conjugated dendrimers. ACS Nano. 2008;2:773–83.

    Article  CAS  Google Scholar 

  22. Bronstein LM, Shifrina ZB. Nanoparticles in dendrimers: from synthesis to application. Nanotechnol Russ. 2009;4:576–608.

    Article  Google Scholar 

  23. Popescu L-M, Piticescu RM, Doni G, Danani A. Interfacial interactions of Fe3+ with PAMAM dendrimer in different pressure conditions. Molecular dynamics. Rev Roum Chim; 2011.

  24. Lin S-T, Maiti PK, Goddard WA III. Dynamics and thermodynamics of water in PAMAM dendrimers at subnanosecond time scales. J Phys Chem B. 2005;109:8663–72.

    Article  CAS  Google Scholar 

  25. Hay G, Mackay ME, Hawker CJ. Thermodynamic properties of dendrimers compared with linear polymers: general observations. J Polym Sci Part B Polym Phys. 2001;39:1766–77.

    Article  CAS  Google Scholar 

  26. Staszczuk P. Surface properties of nanoparticles. In: Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry. Recent advances, techniques and applications, vol. 5. Amsterdam: Elsevier; 2008. p. 343–7.

    Google Scholar 

Download references

Acknowledgements

This work was supported by PNII-RU-PD125/2010 postdoctoral research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Madalina Popescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popescu, L.M., Piticescu, R.M., Stoiciu, M. et al. Investigation of thermal behaviour of hybrid nanostructures based on Fe2O3 and PAMAM dendrimers. J Therm Anal Calorim 110, 357–362 (2012). https://doi.org/10.1007/s10973-012-2352-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2352-0

Keywords

Navigation