Skip to main content
Log in

Adsorption of amino acids on the magnetite-(111)-surface: a force field study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

An Erratum to this article was published on 21 September 2016

Abstract

Magnetite (Fe3O4) is an important biomineral, e.g., used by magnetotactic bacteria. The connection between the inorganic magnetite-(111)-surface and the organic parts of the bacteria is the magnetosome membrane. The membrane is built by different magnetosome membrane proteins (MMPs), which are dominated by the four amino acids glycine (Gly), aspartic acid (Asp), leucine (Leu) and glutamic acid (Glu). Force field simulations of the interaction of the magnetite-(111)-surface and the main amino acid compounds offer the possibility to investigate if and how the membrane proteins could interact with the mineral surface thus providing an atomistic view on the respective binding sites. In a force field simulation the four amino acids were docked on the Fe-terminated magnetite-(111)-surface. The results show that it is energetically favorable for the amino acids to adsorb on the surface with Fe-O-distances between 2.6 Å and 4.1 Å. The involved O-atoms belong to the carboxyl-group (Asp and Glu) or to the carboxylate-group (Gly, Leu and Glu). Electrostatic interactions dominate the physisorption of the amino acids. During the simulations, according to the frequency of the best results, the global minimum for the docking interaction could be attained for all amino acids analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fleet ME (1981) Acta Crystallogr B 37:917–920

    Article  Google Scholar 

  2. Wright JP, Attfield JP, Radaelli PG (2001) Phys Rev Lett 87:266401

    Article  CAS  Google Scholar 

  3. Ritter M, Weiss W (1999) Surf Sci 432:81–94

    Article  CAS  Google Scholar 

  4. Martin GJ, Cutting RS, Vaughan DJ, Warren MC (2009) Am Mineral 94:1341–1350

    Article  CAS  Google Scholar 

  5. Grillo ME, Finnis MW, Ranke W (2008) Phys Rev B 77:075407

    Article  Google Scholar 

  6. Suzuki Y, Hu G (2002) Phys Rev Lett 89:276601

    Article  Google Scholar 

  7. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  8. Grünberg K, Müller EC, Otto A, Reszka R, Lindner D, Kube M, Reinhardt R, Schüler D (2004) Appl Environ Micro 70:1040–1050

    Article  Google Scholar 

  9. Schüler D (2004) Arch Microbiol 181:1–7

    Article  Google Scholar 

  10. Bäuerlein E (2003) Angew Chem Int Ed Engl 42:614–641

    Article  Google Scholar 

  11. Gotliv BA, Addadi L, Weiner S (2003) Chem Biochem 4:522–529

    CAS  Google Scholar 

  12. Magdans U, Torrelles X, Angermund K, Gies H, Rius J (2007) Langmuir 23:4999–5004

    Article  CAS  Google Scholar 

  13. Pareek A, Torrelles X, Angermund K, Rius J, Magdans U, Gies H (2009) Langmuir 25:1453–1458

    Article  CAS  Google Scholar 

  14. Pareek A, Torrelles X, Angermund K, Rius J, Magdans U, Gies H (2009) Langmuir 24:2459–2464

    Article  Google Scholar 

  15. Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Chem Rev 94:2095–2160

    Article  CAS  Google Scholar 

  16. Nair NN, Schreiner E, Marx DJ (2006) J Am Chem Soc 128:13815–13826

    Article  CAS  Google Scholar 

  17. Pollet R, Boehme C, Marx D (2006) Orig Life Evol B 36:363–379

    Article  CAS  Google Scholar 

  18. Lide DR (1997) Handbook of chemistry and physics, 78th edn. CRC, New York

  19. http://accelrys.com/products/datasheets/forcite.pdf

  20. http://accelrys.com/products/marterials-studio/

  21. Sun HJ (1998) J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  22. Cao G, Chen X (2006) Nanotechnology 17:3844–3855

    Article  Google Scholar 

  23. Wang Q, Liew KM, Duan WH (2008) Carbon 46:285–290

    Article  CAS  Google Scholar 

  24. Kulathunga DDTK, Ang KK, Reddy NN (2010) J Phys-Condens Mat 22:345301

    Article  CAS  Google Scholar 

  25. Zhu L, Yao KL, Liu ZL (2006) Phys Rev B 74:035409

    Article  Google Scholar 

  26. Nyberg M, Hasselstrom O, Karis O, Wassdahl N, Weinelt M, Nilsson A, Pettersson LGM (2000) J Chem Phys 112:5420

    Article  CAS  Google Scholar 

  27. Guo Y, Lu X, Zhang H, Weng J, Watari F, Leng Y (2011) J Phys Chem C 115:18572–18581

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bürger.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00894-016-3124-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürger, A., Magdans, U. & Gies, H. Adsorption of amino acids on the magnetite-(111)-surface: a force field study. J Mol Model 19, 851–857 (2013). https://doi.org/10.1007/s00894-012-1606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1606-x

Keywords

Navigation