Skip to main content
Log in

Paper multilayer with a fracture toughness of steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We demonstrate in this paper that commercially available printing paper can reach very high fracture toughness, comparable to that of steel, simply due to a special arrangement of the paper sheets with respect to the crack. Fracture mechanics experiments are conducted on single sheets of paper as well as on multilayer specimens in crack divider and crack arrester configuration. It is demonstrated that an arrangement in crack arrester configuration leads to an increase of the fracture toughness by a factor ten. An explanation of the effect is given and the transferability to other materials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dunlop JWC, Fratzl P (2010) Ann Rev Mater 40:1

    Article  CAS  Google Scholar 

  2. Kamat S, Kessler H, Ballarini R, Nassirou M, Heuer AH (2004) Acta Mater 52:2395

    Article  CAS  Google Scholar 

  3. Kolednik O, Predan J, Fischer FD, Fratzl P (2011) Adv Funct Mater 21:3634

    Article  CAS  Google Scholar 

  4. Walter SL, Flinn BD, Mayer G (2007) Mater Sci Eng 27:570

    Article  CAS  Google Scholar 

  5. Simha NK, Fischer FD, Kolednik O, Chen CR (2003) J Mech Phys Solids 51:209

    Article  Google Scholar 

  6. Embury JD, Petch NJ, Wraith AE, Wright ES (1967) Trans Metall Soc AIME 239:114

    CAS  Google Scholar 

  7. Herzberg RW (1976) Deformation and fracture mechanics of engineering materials. Wiley, New York

    Google Scholar 

  8. Lesuer DR, Syn CK, Sherby OD, Wadsworth J, Lewandoswski JJ, Hunt WH (1996) Int Mater Rev 41:169

    Article  CAS  Google Scholar 

  9. Cao HC, Evans AG (1991) Acta Metall Mater 39:2997

    Article  CAS  Google Scholar 

  10. He MY, Heredia FE, Wissuchek DJ, Shaw MC, Evans AG (1993) Acta Metall Mater 41:1223

    Article  CAS  Google Scholar 

  11. Lee JJ-W, Lloyd IK, Chai H, Jung Y-G, Lawn BR (2007) Acta Mater 55:5859

    Article  CAS  Google Scholar 

  12. Tekyeh-Marouf B, Bagheri R (2007) Mater Sci Eng 448:20

    Article  Google Scholar 

  13. Shaw MC, Clyne TW, Cocks ACF, Fleck NA, Pateras SK (1996) J Mech Phys Solids 44:801

    Article  CAS  Google Scholar 

  14. Hwu KL, Derby B (1999) Acta Mater 47:545

    Article  CAS  Google Scholar 

  15. Mekky W, Nicholson PS (2006) Eng Fract Mech 73:583

    Article  Google Scholar 

  16. Bloyer DR, Ritchie RO, Venkateswara Rao KT (1997) Mater Sci Eng 239–240:393

    Google Scholar 

  17. Li M, Soboyejo WO (2000) Met Mater Trans A 31:1385

    Article  Google Scholar 

  18. Osman TM, Lewandowski JL, Lesuer DR (1997) Mater Sci Eng 229:1

    Article  Google Scholar 

  19. Pandey AB, Majumdar BS, Miracle DB (2001) Acta Mater 49:405

    Article  Google Scholar 

  20. Pozuelo M, Carreno F, Ruano OA (2006) Comp Sci Tech 66:2671

    Article  CAS  Google Scholar 

  21. Kolednik O, Predan J, Shan GX, Simha NK, Fischer FD (2005) Int J Solids Struct 42:605

    Article  Google Scholar 

  22. Westerlind BS, Carlsson LA, Andersson YM (1991) J Mater Sci 26:2630. doi:10.1007/BF02387730

    Google Scholar 

  23. Seth RS, Page DH (1974) J Mater Sci 9:1745. doi:10.1007/BF00541741

    Article  CAS  Google Scholar 

  24. Cravero S, Ruggieri C (2007) Engng Fract Mech 74:2735

    Article  Google Scholar 

  25. Szewczyk W (2008) Fibres Text East Eur 16:117

    CAS  Google Scholar 

  26. Wellmar P, Fellers C, Delhage L (1997) Nord Pulp Paper Res 12:189

    Article  CAS  Google Scholar 

  27. Anderson TL (2005) Fracture mechanics: fundamentals and applications, 3rd edn. CRC, Boca Raton

    Google Scholar 

  28. Zechner J, Janko M, Kolednik O (2013) Comp Sci Tech 74:43

    Article  CAS  Google Scholar 

  29. Tanaka A, Yamauchi T (2000) J Mater Sci 35:1827. doi:10.1023/A:1004797023064

    Article  CAS  Google Scholar 

  30. Hutchinson JW (1968) J Mech Phys Solids 16:337

    Article  Google Scholar 

  31. Zechner J, Kolednik O (2012) Engng Fract Mech. doi:10.1016/j.engfracmech.2012.11.007

  32. Woesz A, Weaver JC, Kazanci M, Dauphin Y, Aizenberg J, Morse DE, Fratzl P (2006) J Mater Res 21:2068

    Article  CAS  Google Scholar 

  33. Dyskin AV, Estrin Y, Kanel-Belov AJ, Pasternak E (2001) Scripta Mater 44:2689

    Article  CAS  Google Scholar 

  34. Dyskin AV, Estrin Y, Kanel-Belov AJ, Pasternak E (2003) Comp Sci Tech 63:483

    Article  Google Scholar 

  35. Kolednik O, Predan J, Fischer FD (2010) Eng Fract Mech 77:2567

    Article  Google Scholar 

  36. Kolednik O (2000) Int J Solids Struct 37:781

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Austrian Federal Government and the Styrian Provincial Government within the research activities of the K2 Competence Center “Integrated Research in Materials, Processing and Product Engineering,” under the frame of the Austrian COMET Competence Center Program, is gratefully acknowledged (Projects A4.11 and A4.20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zechner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zechner, J., Kolednik, O. Paper multilayer with a fracture toughness of steel. J Mater Sci 48, 5180–5187 (2013). https://doi.org/10.1007/s10853-013-7304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7304-y

Keywords

Navigation