Skip to main content
Log in

Fracture resistance of paper

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An attempt has been made to apply the concepts of fracture mechanics to describe the behaviour of a paper sheet with a crack. Considering paper as an orthotropic homogeneous continuum, the critical strain energy release rate, G c, for eight different papers has been measured using linear elastic fracture mechanics. Also, a direct measurement of work of fracture, R, has been made for these samples by using the quasi-static crack propagation technique. For both techniques, results independent of specimen dimensions were obtained. G c and R were found to be experimentally equivalent. The fracture toughness of paper has been compared with that of other engineering materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Initial crack length (cm)

a ij :

Elements of compliance matrix ā (cm2 dyn−1)

A :

Area of fractured surface (cm2)

b :

Specimen width (cm)

E :

Young's modulus (dyn cm−2)

E 1 :

Young's modulus in the machine direction (dyn cm−2)

E 2 :

Young's modulus in the cross direction (dyn cm−2)

E θ :

Young's modulus at angle θ to the machine direction (dyn cm−2)

F :

Finite-width correction factor

G :

Strain energy release rate (erg cm−2)

G c :

Critical strain energy release rate (erg cm−2)

K :

Stress intensity factor (dyn cm−3/2)

K c :

Critical stress intensity factor (dyn cm−3/2)

l :

Specimen length (cm)

r y :

Size of plastic zone (cm)

R :

Work of fracture (erg cm−2)

t :

Specimen thickness (cm)

U :

Strain energy (erg)

θ :

Angle in the plane of the sheet measured from the machine direction

ρ :

Specimen density (g cm−3)

σ c :

Gross tensile stress at fracture (dyn cm−2)

σ N :

Net tensile stress at fracture (dyn cm−2)

σ ys :

Tensile yield stress (dyn cm−2)

References

  1. A. R. Jones, Tappi 51 (1968) 203.

    Google Scholar 

  2. L. Nordman, “Fundamentals of Papermaking Fibres”, (edited by F. Bolam) (Tech. Sect. British Paper and Board Makers' Assoc., Kenley, 1958) p. 333.

    Google Scholar 

  3. D. H. Page and P. A. Tydeman, “The Formation and Structure of Paper”, (edited by F. Bolam) (Tech. Sect. British Paper and Board Makers' Assoc., London, 1962) p. 397.

    Google Scholar 

  4. G. R. Sears, R. F. Tyler and C. W. Denzer, Pulp Paper Mag. Can. 66 (1965) T351.

    Google Scholar 

  5. F. A. Macmillan, W. R. Farrell and K. G. Booth, Pulp Paper Mag. Can. 66 (1965) T361.

    Google Scholar 

  6. V. Balodis, Aust. J. Appl. Sci. 14 (1963) 284.

    Google Scholar 

  7. O. Andersson and O. Falk, Svensk Papperstid. 69 (1966) 91.

    Google Scholar 

  8. C. Gurney and J. Hunt, Proc. Roy. Soc. A 299 (1967) 508.

    Google Scholar 

  9. P. C. Paris and G. C. Sih, “Fracture Toughness Testing and its Applications”, STP 381 (ASTM, Philadelphia, 1965) p. 30.

    Google Scholar 

  10. G. R. Irwin, “Proceedings of the 7th Sagamore Ordnance Materials Research Conference” (Syracuse University Research Institute, August, 1960) p. IV-63, Met. E. 661-611/F.

  11. G. R. Irwin, “Handbuch der Physik”, (edited by S. Flügge) Vol. 6 (Springer-Verlag, Berlin, 1958) p. 551.

    Google Scholar 

  12. G. C. Sih, P. C. Paris and G. R. Irwin, Int. J. Fracture Mech. 1 (1965) 189.

    Google Scholar 

  13. J. Glucklich, Engng. Fracture Mech. 3 (1971) 333.

    Google Scholar 

  14. Progress in Measuring Fracture Toughness and Using Fracture Mechanics: Fifth Report of a Special ASTM Committee, Materials Research and Standards 4 (1964) 107.

    Google Scholar 

  15. F. A. McClintock and G. R. Irwin, “Fracture Toughness Testing and its Applications”, STP 381 (ASTM, Philadelphia, 1965) p. 84.

    Google Scholar 

  16. J. E. Srawley and W. F. Brown, Jun., “Fracture Toughness Testing and its Applications”, STP 381 (ASTM, Philadelphia, 1965) p. 133.

    Google Scholar 

  17. C. L. Mantell (Ed.), “Engineering Materials Handbook”, (McGraw-Hill, New York, 1958) p. 1–40.

    Google Scholar 

  18. O. L. Bowie, J. Appl. Mech. 31 (1964) 208.

    Google Scholar 

  19. S. G. Lekhnitskii, “Theory of Elasticity of an Anisotropic Elastic Body” (Holden-Day, San Francisco, 1963) p. 41.

    Google Scholar 

  20. G. T. Hahn, M. F. Kanninen and A. R. Rosenfield, “Annual Review of Materials Science”, (edited by R. A. Huggins) Vol. 2 (Annual Reviews Inc., Palo Alto, 1972) p. 381.

    Google Scholar 

  21. H. G. Tattersall and G. Tappin, J. Mater. Sci. 1 (1966) 296.

    Google Scholar 

  22. R. J. Ferguson, G. P. Marshall and J. G. Williams, Polymer 14 (1973) 451.

    Google Scholar 

  23. H. J. Konish, Jun, J. L. Swedlow and T. A. Cruse, J. Composite Materials 6 (1972) 114.

    Google Scholar 

  24. C. D. Ellis and B. Harris, ibid 7 (1973) 76.

    Google Scholar 

  25. R. J. Sanford and F. R. Stonesifer, ibid 5 (1971) 241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seth, R.S., Page, D.H. Fracture resistance of paper. J Mater Sci 9, 1745–1753 (1974). https://doi.org/10.1007/BF00541741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541741

Keywords

Navigation