Skip to main content
Log in

An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminide microlaminates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article presents the results of a combined experimental and analytical study of the effects of ductile-layer thickness on the initiation toughness and resistance-curve behavior of nickel aluminide composites that are reinforced with ductile V and Nb-15Al-40Ti layers. The initiation toughness and specimen-independent steady-state toughness values are shown to increase with increasing layer thickness. Stable crack growth and toughening in the crack-arrestor orientation are also attributed to crack bridging and the interactions of crack tips with the ductile layers. The overall toughening in the microlaminates is modeled by superposing the shielding contributions due to crack bridging on the stress-intensity factor required to promote renucleation ahead of the first ductile layer ahead of the precrack. The implications of the results are also discussed for the design of ductile phase-toughened microlaminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.D. Kristic, P.S. Nicholson, and R.G. Hoagland: J. Am. Ceram. Soc., 1981, vol. 64, pp. 499–504.

    Article  Google Scholar 

  2. V.D. Kristic: Phil. Mag., 1983, vol. 48, pp. 695–708.

    Google Scholar 

  3. W.O. Soboyejo, K.T. Venkateswara Rao, S.M.L. Sastry, and R.O. Ritchie: Metall. Trans. A, 1993, vol. 24A, pp. 585–99.

    CAS  Google Scholar 

  4. W.O. Soboyejo, F. Ye, L.-C. Chen, N. Bahtish, D.S. Schwartz, and R.J. Lederich: Acta Mater., 1996, vol. 44, pp. 2027–41.

    Article  CAS  Google Scholar 

  5. P. Ramasundaram, R. Bowman, and W.O. Soboyejo: Mater. Sci. Eng. A, 1998, vol. A248, pp. 132–46.

    CAS  Google Scholar 

  6. P.A. Mataga: Acta Metall., 1989, vol. 37, pp. 3349–59.

    Article  CAS  Google Scholar 

  7. M.F. Ashby, F.J. Blunt, and M. Bannister: Acta Metall., 1989, vol. 37, pp. 1847–57.

    Article  CAS  Google Scholar 

  8. H.C. Cao, B.J. Dalgleish, H.E. Deve, C. Elliott, A.G. Evans, R. Mehrabian, and G. R. Odette: Acta Metall., 1989, vol. 37, pp. 2969–77.

    Article  CAS  Google Scholar 

  9. H.E. Deve and M.J. Maloney: Acta Metall. Mater., 1991, vol. 39, pp. 2275–84.

    Article  CAS  Google Scholar 

  10. M. Bannister, H. Shercliff, G. Bao, F. Zok, and M.F. Ashby: Acta Metall. Mater., 1992, vol. 40, pp. 1531–37.

    Article  CAS  Google Scholar 

  11. F.E. Heredia, M.Y. He, G.E. Lucas, A.G. Evans, H.E. Deve, and D. Konitzer: Acta Metall. Mater., 1993, vol. 41, pp. 505–11.

    Article  CAS  Google Scholar 

  12. D.R. Bloyer, K.T. Venkateswara Rao, and R.O. Ritchie: Mater. Sci. Eng. A, 1996, vol. A216, pp. 80–90.

    CAS  Google Scholar 

  13. D.R. Bloyer, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2483–96.

    Article  CAS  Google Scholar 

  14. D.R. Bloyer, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 633–42.

    Article  CAS  Google Scholar 

  15. M.Y. He, F.E. Heredia, D.J. Wissuchek, M.C. Shaw, and A.G. Evans: Acta Metall. Mater., 1993, vol. 41, pp. 1223–28.

    Article  CAS  Google Scholar 

  16. X.F. Chen, D.R. Johnson, R.D. Noebe, and B.F. Oliver: J. Mater. Res., 1995, vol. 10, pp. 1159–70.

    CAS  Google Scholar 

  17. S.M. Joslin, X.F. Chen, B.F. Oliver, and R.D. Noebe: Mater. Sci. Eng. A, 1995, vol. A196, pp. 9–18.

    CAS  Google Scholar 

  18. G.R. Odette, B.L. Chao, J.W. Sheckherd, and G.E. Lucas: Acta Metall. Mater., 1992, vol. 40, pp. 2381–89.

    Article  CAS  Google Scholar 

  19. P.R. Subramanian, M.G. Mendiratta, and D.B. Miracle: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2769–81.

    CAS  Google Scholar 

  20. J. Kajuch, J. Short, and J.J. Lewandowski: Acta Metall. Mater., 1995, vol. 43, pp. 1955–67.

    Article  CAS  Google Scholar 

  21. L. Shaw and R. Abbaschian: Acta Metall. Mater., 1994, vol. 42, pp. 213–23.

    Article  CAS  Google Scholar 

  22. M. Li, R. Wang, N. Katsube, and W.O. Soboyejo: Scripta Mater., 1999, vol. 40, pp. 397–402.

    Article  CAS  Google Scholar 

  23. F. Ye, C. Mercer, and W.O. Soboyejo: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2361–74.

    Article  CAS  Google Scholar 

  24. W.O. Soboyejo, J. DiPasquale, F. Ye, C. Mercer, T.S. Srivatsan, and D.G. Konitzer: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1025–37.

    Article  CAS  Google Scholar 

  25. B. Budiansky, J.C. Amazigo, and A.G. Evans: J. Mech. Phys. Solids, 1988, vol. 36, pp. 167–87.

    Article  Google Scholar 

  26. L.R.F. Rose: J. Mech. Phys. Solids, 1987, vol. 35, pp. 383–405.

    Article  Google Scholar 

  27. K.L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge, United Kingdom 1985.

    Google Scholar 

  28. H. Tada, P.C. Paris, and G.R. Irwin: The Stress Analysis of Cracks Handbook, Del Research, St. Louis, MO, 1985.

    Google Scholar 

  29. F. Zok and C.L. Hom: Acta Metall. Mater., 1990, vol. 38, pp. 1895–1904.

    Article  CAS  Google Scholar 

  30. B.N. Cox and C.S. Lo: Acta Metall. Mater., 1992, vol. 40, pp. 69–80.

    Article  CAS  Google Scholar 

  31. B.N. Cox and L.R.F. Rose: Mech. Mater., 1996, vol. 22, pp. 249–63.

    Article  Google Scholar 

  32. T. Fett and D. Munz: Stress Intensity Factors and Weight Functions for One-Dimensional Cracks, Institut fur Materialforschung, Kernforschungszentrum, Karlsryhe, Germany, 1994.

    Google Scholar 

  33. F. Ye, M. Li, and W.O. Soboyejo: J. Am. Ceram. Soc., 1999, vol. 82, pp. 2460–64.

    Article  CAS  Google Scholar 

  34. S. Muju, P.M. Anderson, and D.A. Mendelsohn: Acta Mater., 1998, vol. 46, pp. 5385–97.

    Article  CAS  Google Scholar 

  35. D.L. Davidson: Southwest Research Institute, San Antonio, TX, unpublished research, 1998.

  36. D. Van Heerden, A.J. Gavens, T. Foecke, and T.P. Weihs: Mater. Sci. Eng. A, 1999, vol. A261, pp. 212–16.

    Google Scholar 

  37. H.C. Cao, J.P. Lofvander, A.G. Evans, R.G. Rowe, and D.W. Skelly: Mater. Sci. Eng. A, 1994, vol. A185, pp. 87–95.

    CAS  Google Scholar 

  38. J. Heathcote, G.R. Odette, and G.E. Lucas: Acta Mater., 1996, vol. 44, pp. 4289–99.

    Article  CAS  Google Scholar 

  39. C. Laird and G.C. Smith: Phil. Mag., 1962, vol. 8, pp. 847–57.

    Google Scholar 

  40. Y. Li, W.O. Soboyejo, and R.A. Rapp: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 495–504.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Soboyejo, W.O. An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminide microlaminates. Metall Mater Trans A 31, 1385–1399 (2000). https://doi.org/10.1007/s11661-000-0257-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0257-1

Keywords

Navigation