Skip to main content
Log in

Effect of hybridization of liquid rubber and nanosilica particles on the morphology, mechanical properties, and fracture toughness of epoxy composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A liquid carboxyl-terminated butadiene–acrylonitrile copolymer (CTBN) and SiO2 particles in nanosize were used to modify epoxy, and binary CTBN/epoxy composites and ternary CTBN/SiO2/epoxy composites were prepared using piperidine as curing agent. The morphologies of the composites were observed by scanning electron microscope (SEM) and transmission electron microscope (TEM), and it is indicated that the size of CTBN particles increases with CTBN content in the binary composites, however, the CTBN particle size decreases with the content of nanosilica in the ternary composites. The effects of CTBN and nanosilica particles on the mechanical and fracture toughness of the composites were also investigated, it is shown that the tensile mechanical properties of the binary CTBN-modified epoxy composites can be further improved by addition of nanosilica particles, moreover, obvious improvement in fracture toughness of epoxy can be achieved by hybridization of liquid CTBN rubber and nanosilica particles. The morphologies of the fractured surface of the composites in compact tension tests were explored attentively by field emission SEM (FE-SEM), it is found that different zones (pre-crack, stable crack propagation, and fast crack zones) on the fractured surface can be obviously discriminated, and the toughening mechanism is mainly related to the stable crack propagation zone. The cavitation of the rubber particles and subsequent void growth by matrix shear deformation are the main toughening mechanisms in both binary and ternary composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yee AF, Du J, Thouless MD (2000) In: Paul DR, Bucknall CB (eds) Polymer blends, vol 2. Wiley, New York

    Google Scholar 

  2. McGarry FJ (1970) Proc R Soc A319:59. doi:10.1098/rspa.1970.0165

    Google Scholar 

  3. Kunz-Douglass S, Beaumont PWR, Ashby MF (1980) J Mater Sci 15:1109. doi:10.1007/BF00551799

    Article  CAS  Google Scholar 

  4. Bascom WD, Cottington RL, Jones RL, Peyser P (1975) J Appl Polym Sci 19:2545. doi:10.1002/app.1975.070190917

    Article  CAS  Google Scholar 

  5. Yee AF, Pearson RA (1986) J Mater Sci 21:2462. doi:10.1007/BF01114293

    Article  CAS  Google Scholar 

  6. Pearson RA, Yee AF (1989) J Mater Sci 24:2571. doi:10.1007/BF01174528

    Article  CAS  Google Scholar 

  7. Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Polymer 24:1341. doi:10.1016/0032-3861(83)90070-8

    Article  CAS  Google Scholar 

  8. Kinloch AJ, Shaw SJ, Hunston DL (1983) Polymer 24:1355. doi:10.1016/0032-3861(83)90071-x

    Article  CAS  Google Scholar 

  9. Ratna D, Banthia AK (2004) Macromol Res 12:11. doi:10.1007/BF03218989

    Article  CAS  Google Scholar 

  10. Bagheri R, Marouf BT, Pearson RA (2009) Polym Rev 49:201. doi:10.1080/15583720903048227

    Article  CAS  Google Scholar 

  11. Unnikrishnan KP, Thachil ET (2006) Des Monomers Polym 9:129. doi:10.1163/156855506776382664

    Article  CAS  Google Scholar 

  12. Garg AC, Mai YW (1988) Compos Sci Technol 31:179. doi:10.1016/0266-3538(88)90009-7

    Article  CAS  Google Scholar 

  13. Bucknall CB, Partridge IK (1983) Polymer 24:639. doi:10.1016/0032-3861(83)90120-9

    Article  CAS  Google Scholar 

  14. Cecere JA, McGrath JE (1986) Polym Prepr 27:299

    Article  CAS  Google Scholar 

  15. Kim SC, Brown HR (1987) J Mater Sci 22:2589. doi:10.1007/bf01082149

    Article  CAS  Google Scholar 

  16. MacKinnon AJ, Jenkins SD, McGrail PT, Pethrick RA (1992) Macromolecules 25:3492. doi:10.1021/ma00039a029

    Article  CAS  Google Scholar 

  17. Kinloch AJ, Yuen ML, Jenkins SD (1994) J Mater Sci 29:3781. doi:10.1007/bf00357349

    Article  CAS  Google Scholar 

  18. Pearson RA, Yee AF (1993) Polymer 34:3658. doi:10.1016/0032-3861(93)90051-b

    Article  CAS  Google Scholar 

  19. Pearson RA, Yee AF (1991) J Mater Sci 26:3828. doi:10.1007/bf01184979

    Article  CAS  Google Scholar 

  20. Bagheri R, Kinloch AJ (1996) J Mater Sci 31:3945. doi:10.1007/bf00352655

    Article  CAS  Google Scholar 

  21. Sue HJ (1991) Polym Eng Sci 31:275. doi:10.1002/pen.760310411

    Article  CAS  Google Scholar 

  22. Gam KT, Miyamoto M, Nishimura R, Sue HJ (2003) Polym Eng Sci 43:1635. doi:10.1002/pen.10137

    Article  CAS  Google Scholar 

  23. Nguyen-Thuc BH, Maazouz A (2002) Polym Eng Sci 42:120. doi:10.1002/pen.10933

    Article  CAS  Google Scholar 

  24. Mafi ER, Ebrahimi M (2008) Polym Eng Sci 48:1376. doi:10.1002/pen.21104

    Article  CAS  Google Scholar 

  25. Giannakopoulos G, Masania K, Taylor AC (2011) J Mater Sci 46:327. doi:10.1007/s10853-010-4816-6

    Article  CAS  Google Scholar 

  26. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48:530. doi:10.1016/j.polymer.2006.11.038

    Article  CAS  Google Scholar 

  27. Adachi T, Osaki M, Araki W, Kwon SC (2008) Acta Mater 56:2101. doi:10.1016/j.actamat.2008.01.002

    Article  CAS  Google Scholar 

  28. Qi B, Zhang QX, Bannister M, Mai YW (2006) Compos Struct 75:514. doi:10.1016/j.compstruct.2006.04.032

    Article  Google Scholar 

  29. Auad ML (2007) Exp Polym Lett 1:629. doi:10.3144/expresspolymlett.2007.86

    Article  CAS  Google Scholar 

  30. Zhou YX (2008) Exp Polym Lett 2:40. doi:10.3144/expresspolymlett.2008.6

    Article  CAS  Google Scholar 

  31. Deng S, Zhang J, Ye L, Wu J (2008) Polymer 49:5119. doi:10.1016/j.polymer.2008.09.027

    Article  CAS  Google Scholar 

  32. Kelnar I, Khunová V, Kotek J, Kaprálková L (2007) Polymer 48:5332. doi:10.1016/j.polymer.2007.06.062

    Article  CAS  Google Scholar 

  33. Wang YT (2012) Exp Polym Lett 6:719. doi:10.3144/expresspolymlett.2012.77

    Article  CAS  Google Scholar 

  34. Kusmono Mohd, Ishak ZA, Chow WS, Takeichi T, Rochmadi (2008) Eur Polym J 44:1023. doi:10.1016/j.eurpolymj.2008.01.019

    Article  CAS  Google Scholar 

  35. Bashar M (2011) Exp Polym Lett 5:882. doi:10.3144/expresspolymlett.2011.87

    Article  CAS  Google Scholar 

  36. Kinloch A, Mohammed R, Taylor A, Eger C, Sprenger S, Egan D (2005) J Mater Sci 40:5083. doi:10.1007/s10853-005-1716-2

    Article  CAS  Google Scholar 

  37. ASTM D638-99 (1999) Standard test method for tensile properties of plastics. ASTM

  38. ASTM D5045-99 (1999) In: Standard test methods for plane strain fracture toughness and strain energy release rate of plastic materials. ASTM International, West Conshohocken

  39. Yamanaka K, Inoue T (1990) J Mater Sci 25:241. doi:10.1007/bf00544214

    Article  CAS  Google Scholar 

  40. Yamanaka K, Takagi Y, Inoue T (1989) Polymer 30:1839. doi:10.1016/0032-3861(89)90355-8

    Article  CAS  Google Scholar 

  41. Thomas R, Abraham J, Thomas PS, Thomas S (2004) J Polym Sci, Part B 42:2531. doi:10.1002/polb.20115

    Article  CAS  Google Scholar 

  42. Kim NH, Kim HS (2006) J Appl Polym Sci 100:4470. doi:10.1002/app.22987

    Article  CAS  Google Scholar 

  43. Hsu YG, Liang CW (2007) J Appl Polym Sci 106:1576. doi:10.1002/app.25412

    Article  CAS  Google Scholar 

  44. Lazzeri A, Bucknall CB (1993) J Mater Sci 28:6799. doi:10.1007/bf00356433

    Article  CAS  Google Scholar 

  45. Gao XL (2008) Math Mech Solids 138:357. doi:10.1177/1081286507086906

    Article  Google Scholar 

  46. Hsieh TH, Kinloch AJ, Masania K, Taylor AC, Sprenger S (2010) Polymer 51:6284. doi:10.1016/j.polymer.2010.10.048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (No. 51073052), Shanghai Leading Academic Discipline Project (B502) and Shanghai Key Laboratory Project (08DZ2230500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Ai Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S.A., Wang, G.T. & Mai, Y.W. Effect of hybridization of liquid rubber and nanosilica particles on the morphology, mechanical properties, and fracture toughness of epoxy composites. J Mater Sci 48, 3546–3556 (2013). https://doi.org/10.1007/s10853-013-7149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7149-4

Keywords

Navigation