Skip to main content
Log in

Microstructure Evolution and Strain Softening of Carbon Black Filled Natural Rubber Vulcanizates

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Incorporation of carbon black (CB) in natural rubber (NR) enhances the Mullins effect and Payne effect of their vulcanizates, but the strain softening mechanisms and the microstructure evolution in the vulcanizates have not been clearly concluded so far. We investigate the Mullins effect and Payne effect of CB filled NR vulcanizates by using cyclic tensile tests at different temperatures and dynamic rheological measurements combined with simultaneous electric conduction. During cyclic stretching, the normalized recovery hysteresis energy and accumulative softening energy for NR/CB vulcanizates with different loadings can be both superimposed on a master curve, indicating that the Mullins effect is mainly dominated by the rubber matrix. The irreversible simultaneous resistance evolution also reveals that the structural evolution of nanoparticles (NPs) network is not directly related to the Mullins effect. Moreover, the extension of linear viscoelastic region and the hysteresis of Payne effect for filled vulcanizates subjected to cyclic stretching indicate the destruction of CB aggregated structure and the interfacial layers between CB and rubber chains during cyclic stretching. This investigation would be illuminating for the microstructure evolution and strain softening of rubber nanocomposites under harsh service conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murphy, W. N. The rational use of vulcanizable rubber. Am. J. Dent. Sci. 1891, 25, 124–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yamashita, S.; Takahashi, S. Molecular mechanisms of natural rubber biosynthesis. Annu. Rev. Biochem. 2020, 89, 821–851.

    Article  CAS  PubMed  Google Scholar 

  3. Song, Y.; Zheng, Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog. Mater. Sci. 2016, 84, 1–58.

    Article  CAS  Google Scholar 

  4. Song, Y.; Zheng, Q. A. Linear viscoelasticity of polymer melts filled with nano-sized fillers. Polymer 2010, 51, 3262–3268.

    Article  CAS  Google Scholar 

  5. Tan, Y.; Wang, L.; Xiao, J.; Zhang, X.; Wang, Y.; Liu, C.; Zhang, H.; Liu, C.; Xia, Y.; Sui, K. Synchronous enhancement and stabilization of graphene oxide liquid crystals: inductive effect of sodium alginates in different concentration zones. Polymer 2019, 160, 107–114.

    Article  CAS  Google Scholar 

  6. van Beilen, J. B.; Poirier, Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol. 2007, 25, 522–529.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, J.; Wu, S.; Tang, Z.; Lin, T.; Guo, B.; Huang, G. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter 2015, 11, 2290–2299.

    Article  CAS  PubMed  Google Scholar 

  8. Wu, J.; Qu, W.; Huang, G.; Wang, S.; Huang, C.; Liu, H. Super-resolution fluorescence imaging of spatial organization of proteins and lipids in natural rubber. Biomacromolecules 2017, 18, 1705–1712.

    Article  CAS  PubMed  Google Scholar 

  9. Harwood, J. A. C.; Mullins, L.; Payne, A. R. Strsss softening in natural rubber vulcanizates. 2. stress softening effects in pure gum and filler loaded rubbers. J. Appl. Polym. Sci. 1965, 9, 3011–3021.

    Article  CAS  Google Scholar 

  10. Diani, J.; Fayolle, B.; Gilormini, P. A review on the Mullins effect. Eur. Polym. J. 2009, 45, 601–612.

    Article  CAS  Google Scholar 

  11. Kakavas, P. A. Mechanical properties of bonded elastomer discs subjected to triaxial stress. J. Appl. Polym. Sci. 1996, 59, 251–261.

    Article  CAS  Google Scholar 

  12. Merckel, Y.; Diani, J.; Brieu, M.; Caillard, J. Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers. Mech. Mater. 2013, 57, 30–41.

    Article  Google Scholar 

  13. Payne, A. R.; Whittake. Re Effect of vulcanization on low-strain dynamic properties of filled rubbers. J. Appl. Polym. Sci. 1972, 16, 1191–1212.

    Article  CAS  Google Scholar 

  14. Song, Y.; Du, M.; Yang, H.; Zheng, Q. Structure and viscoelasticity of rubber materials. Acta Polymerica Sinica (in Chinese) 2013, 1115–1130.

  15. Chazeau, L.; Brown, J. D.; Yanyo, L. C.; Sternstein, S. S. Modulus recovery kinetics end other insights into the Payne effect for filled elastomers. Polym. Compos. 2000, 21, 202–222.

    Article  CAS  Google Scholar 

  16. Payne, A. R. Elasticity of carbon black networks. J. Colloid Sci. 1964, 19, 744–754.

    Article  CAS  Google Scholar 

  17. Nagaraja, S. M.; Mujtaba, A.; Beiner, M. Quantification of different contributions to dissipation in elastomer nanoparticle composites. Polymer 2010, 111, 48–52.

    Article  Google Scholar 

  18. Leblanc, J. L. Simplified modeling calculations to enlighten the mechanical properties (modulus) of carbon black filled diene rubber compounds. J. Appl. Polym. Sci. 2011, 122, 599–607.

    Article  CAS  Google Scholar 

  19. Meier, J. G.; Klueppel, M. Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromol. Mater. Eng. 2008, 293, 12–38.

    Article  CAS  Google Scholar 

  20. Papon, A.; Merabia, S.; Guy, L.; Lequeux, F.; Montes, H.; Sotta, P.; Long, D. R. Unique nonlinear behavior of nano-filled elastomers: from the onset of strain softening to large amplitude shear deformations. Macromolecules 2012, 45, 2891–2904.

    Article  CAS  Google Scholar 

  21. Majeste, J.; Vincent, F. A kinetic model for silica-filled rubber reinforcement. J. Rheol. 2015, 59, 405–427.

    Article  CAS  Google Scholar 

  22. Clough, J. M.; Creton, C.; Craig, S. L.; Sijbesma, R. P. Covalent bond scission in the Mullins effect of a filled elastomer: real-time visualization with mechanoluminescence. Adv. Funct. Mater. 2016, 26, 9063–9074.

    Article  CAS  Google Scholar 

  23. Stoeckelhuber, K. W.; Svistkov, A. S.; Pelevin, A. G.; Heinrich, G. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 2011, 44, 4366–4381.

    Article  CAS  Google Scholar 

  24. Coquelle, E.; Bossis, G. Mullins effect in elastomers filled with particles aligned by a magnetic field. Int. J. Solids Struct. 2006, 43, 7659–7672.

    Article  CAS  Google Scholar 

  25. Song, Y.; Zeng, L.; Zheng, Q. Reconsideration of the rheology of silica filled natural rubber compounds. J. Phys. Chem. B 2010, 121, 5867–5875.

    Article  Google Scholar 

  26. Qian, D.; Meng, F. Modelling Mullins effect induced by chain delamination and reattachment. Polymer 2021, 222, 123608.

    Article  CAS  Google Scholar 

  27. Li, X.; Tian, C.; Li, H.; Liu, X.; Zhang, L.; Hong, S.; Ning, N.; Tian, M. Combined effect of volume fractions of nanofillers and filler-polymer interactions on 3D multiscale dispersion of nanofiller and Payne effect. Compos. Part A-Appl. Sci. Manuf. 2022, 152, 106722.

    Article  CAS  Google Scholar 

  28. Wang, S.; Chester, S. A. Modeling thermal recovery of the Mullins effect. Mech. Mater. 2018, 126, 88–98.

    Article  Google Scholar 

  29. Ma, C.; Ji, T.; Robertson, C. G.; Rajeshbabu, R.; Zhu, J.; Dong, Y. Molecular insight into the Mullins effect: irreversible disentanglement of polymer chains revealed by molecular dynamics simulations. Phys. Chem. Chem. Phys. 2017, 19, 19468–19477.

    Article  CAS  PubMed  Google Scholar 

  30. Song, Y.; Zheng, Q. Application of two phase model to linear dynamic rheology of filled polymer melts. Polymer 2011, 52, 6173–6179.

    Article  CAS  Google Scholar 

  31. Li, Z.; Song, Y.; Zheng, Q. Payne effect and weak overshoot in rubber nanocomposites. Chinese J. Polym. Sci. 2022, 40, 85–92.

    Article  Google Scholar 

  32. Shi, X.; Sun, S.; Zhao, A.; Zhang, H.; Zuo, M.; Song, Y.; Zheng, Q. Influence of carbon black on the Payne effect of filled natural rubber compounds. Compos. Sci. Technol. 2021, 203, 108586.

    Article  CAS  Google Scholar 

  33. Song, Y.; Xu, Z.; Wang, W.; Zheng, Q. Payne effect of carbon black filled natural rubber nanocomposites: Influences of extraction, crosslinking, and swelling. J. Rheol. 2021, 65, 807–820.

    Article  CAS  Google Scholar 

  34. Zhong, X.; Song, Y.; Zheng, Q.; Wang, W. Influence of coagents on Payne effect of butadiene rubber vulcanizates. Polymer 2021, 212, 123298.

    Article  CAS  Google Scholar 

  35. Xu, H.; Xia, X.; Hussain, M.; Song, Y.; Zheng, Q. Linear and nonlinear rheological behaviors of silica filled nitrile butadiene rubber. Polymer 2018, 156, 222–227.

    Article  CAS  Google Scholar 

  36. Yang, R.; Song, Y.; Zheng, Q. Payne effect of silica-filled styrene-butadiene rubber. Polymer 2017, 116, 304–313.

    Article  CAS  Google Scholar 

  37. Hussain, M.; Yasin, S.; Akram, M. A.; Xu, H.; Song, Y.; Zheng, Q. Influence of ionic liquids on structure and rheological behaviors of silica-filled butadiene rubber. Ind. Eng. Chem. Res. 2019, 58, 18205–18212.

    Article  CAS  Google Scholar 

  38. Xu, Y.; Xu, H.; Zheng, Q.; Song, Y. Influence of ionic liquids on rheological behaviors of polyisoprene rubber/silica compounds. Polymer 2019, 183, 121898.

    Article  CAS  Google Scholar 

  39. Le, H. H.; Pham, T.; Henning, S.; Klehm, J.; Wiessner, S.; Stoeckelhuber, K. W.; Das, A.; Hoang, X. T.; Do, Q. K.; Wu, M.; Vennemann, N.; Heinrich, G.; Radusch, H. J. Formation and stability of carbon nanotube network in natural rubber: effect of non-rubber components. Polymer 2015, 73, 111–121.

    Article  CAS  Google Scholar 

  40. Huang, M.; Tunnicliffe, L. B.; Zhuang, J.; Ren, W.; Yan, H.; Busfield, J. J. C. Strain- dependent dielectric behavior of carbon black reinforced natural rubber. Macromolecules 2016, 49, 2339–2347.

    Article  CAS  Google Scholar 

  41. Steinhauser, D.; Moewes, M.; Klueppel, M. Carbon black networking in elastomers monitored by simultaneous rheological and dielectric investigations. J. Phys. Condens. Matter 2016, 28, 495103.

    Article  PubMed  Google Scholar 

  42. Beutier, C.; David, L.; Sudre, G.; Cassagnau, P.; Heuillet, P.; Cantaloube, B.; Serghei, A. In-situ coupled mechanical/electrical investigations of EPDM/CB composite materials: the electrical signature of the mechanical Mullins effect. Compos. Sci. Technol. 2022, 218, 109144.

    Article  CAS  Google Scholar 

  43. Taniguchi, Y.; Mai, T.; Yamaguchi, M.; Tsunoda, K.; Urayama, K. Investigating multiaxial Mullins effect of carbon-black-reinforced elastomers using electrical resistivity measurements. ACS Appl. Polym. Mater. 2022, 4, 1139–1149.

    Article  CAS  Google Scholar 

  44. Zhao, A.; Shi, X.; Sun, S.; Zhang, H.; Zuo, M.; Song, Y.; Zheng, Q. Insights into the Payne effect of carbon black filled styrene-butadiene rubber compounds. Chinese J. Polym. Sci. 2021, 39, 81–90.

    Article  CAS  Google Scholar 

  45. Holt, A. P.; Sangoro, J. R.; Wang, Y. Y.; Agapov, A. L.; Sokolov, A. P. Chain and segmental dynamics of poly(2-vinylpyridine) nanocomposites. Macromolecules 2013, 46, 4168–4173.

    Article  CAS  Google Scholar 

  46. Flory, P. J.; Rehner, J. Statistical mechanics of cross-linked polymer networks. II. Swelling. J. Chem. Phys. 1943, 11, 521–526.

    Article  CAS  Google Scholar 

  47. Huneau, B. Strain-induced crystallization of natural rubber: a review of X-ray diffraction investigations. Rubber Chem. Technol. 2011, 84, 425–452.

    Article  CAS  Google Scholar 

  48. Li, Z.; Xu, H.; Xia, X.; Song, Y.; Zheng, Q. Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites. Polymer 2019, 171, 106–114.

    Article  CAS  Google Scholar 

  49. Li, Z.; Wen, F.; Hussain, M.; Song, Y.; Zheng, Q. Scaling laws of Mullins effect in nitrile butadiene rubber nanocomposites. Polymer 2020, 193, 122350.

    Article  CAS  Google Scholar 

  50. Hou, F.; Song, Y.; Zheng, Q. Influence of liquid isoprene rubber on strain softening of carbon black filled isoprene rubber nanocomposites. Chinese J. Polym. Sci. 2021, 39, 887–895.

    Article  CAS  Google Scholar 

  51. Song, Y.; Zheng, Q. A guide for hydrodynamic reinforcement effect in nanoparticle-filled polymers. Crit. Rev. Solid State Mat. Sci. 2016, 41, 318–346.

    Article  CAS  Google Scholar 

  52. Hu, Z.; Zhou, J.; Song, Y.; Zheng, Q.; Wang, W. Strain softening of natural rubber composites filled with carbon black and aramid fiber. J. Rheol. 2023, 67, 157–168.

    Article  CAS  Google Scholar 

  53. Perez-Aparicio, R.; Vieyres, A.; Albouy, P.; Sanseau, O.; Vanel, L.; Long, D. R.; Sotta, P. Reinforcement in natural rubber elastomer nanocomposites: breakdown of entropic elasticity. Macromolecules 2013, 46, 8964–8972.

    Article  CAS  Google Scholar 

  54. Aranguren, M. I.; Mora, E.; Degroot, J. V.; Macosko, C. W. Effect of reinforcing fillers on the rheology of polymer melts. J. Rheol. 1992, 36, 1165–1182.

    Article  CAS  Google Scholar 

  55. Nasr, G. M. Vulcanization conditions: How they affect the electrical conductivity of SBR loaded with the percolation concentration of FEF-black. Polym. Test. 1996, 15, 585–591.

    Article  CAS  Google Scholar 

  56. Li, B.; You, W.; Peng, L.; Huang, X.; Yu, W. Revealing the shear effect on the interfacial layer in polymer nanocomposites through nanofiber reorientation. Macromolecules 2023, 56, 3050–3063.

    Article  CAS  Google Scholar 

  57. Kluppel, M.; Schramm, J. A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol. Theor. Simul. 2000, 9, 742–754.

    Article  CAS  Google Scholar 

  58. Suzuki, N.; Ito, M.; Yatsuyanagi, F. Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer 2005, 46, 193–201.

    Article  Google Scholar 

  59. Wolff, S.; Wang, M. J.; Tan, E. H. Filler elastomer interactions. 7. study on bound rubber. Rubber Chem. Technol. 1993, 66, 163–177.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51790503, 52273084 and 51873181).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zuo or Qiang Zheng.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, XY., Sun, SH., Yang, L. et al. Microstructure Evolution and Strain Softening of Carbon Black Filled Natural Rubber Vulcanizates. Chin J Polym Sci 41, 1947–1957 (2023). https://doi.org/10.1007/s10118-023-3025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3025-0

Keywords

Navigation