Skip to main content
Log in

Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The principal toughening mechanism of a substantially toughened, rubber-modified epoxy has again been shown to involve internal cavitation of the rubber particles and the subsequent formation of shear bands. Additional evidence supporting this sequence of events which provides a significant amount of toughness enhancement, is presented. However, in addition to this well-known mechanism, more subtle toughening mechanisms have been found in this work. Evidence for such mechanisms as crack deflection and particle bridging is shown under certain circumstances in rubber-modified epoxies. The occurrence of these toughening mechanisms appears to have a particle size dependence. Relatively large particles provide only a modest increase in fracture toughness by a particle bridging/crack deflection mechanism. In contrast, smaller particles provide a significant increase in toughness by cavitation-induced shear banding. A critical, minimum diameter for particles which act as bridging particles exists and this critical diameter appears to scale with the properties of the neat epoxy. Bimodal mixtures of epoxies containing small and large particles are also examined and no synergistic effects are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Sultan, R. C. Liable andF. J. McGarry,Polym. Symp. 16 (1971) 127.

    Google Scholar 

  2. J. N. Sultan andF. J. McGarry,Polym. Engng Sci. 13 (1973) 29.

    Google Scholar 

  3. A. C. Garg andY. W. Mai,Comp. Sci. Technol 31 (1988) 179.

    Google Scholar 

  4. E. J. Kramer, in “Advances in Polymer Science”, edited by H. H. Kausch, Vol. 52/53 (Springer-Verlag, Berlin, 1983) Ch. 1.

    Google Scholar 

  5. A. F. Yee andR. A. Pearson,J. Mater. Sci. 21 (1986) 2462.

    Google Scholar 

  6. R. A. Pearson andA. F. Yee,ibid. 21 (1986) 2475.

    Google Scholar 

  7. W. D. Bascom, R. L. Cottington, R. L. Jones andP. Peyser,J. Appl. Polym. Sci. 19 (1975) 2425.

    Google Scholar 

  8. W. D. Bascom andR. L. Cottington,J. Adhesion 7 (1976) 333.

    Google Scholar 

  9. A. J. Kinloch, S. J. Shaw, D. A. Tod andD. L. Hunston,Polymer 24 (1983) 1341.

    Google Scholar 

  10. Idem, ibid. 24 (1983) 1355.

    Google Scholar 

  11. A. J. Kinloch andD. L. Hunston,J. Mater. Sci. Lett. 5 (1986) 909.

    Google Scholar 

  12. R. A. Pearson andA. F. Yee,J. Mater. Sci. 24 (1989) 2571.

    Google Scholar 

  13. S. Kunz-Douglass, P. W. R. Beaumont andM. F. Ashby,ibid. 15 (1980) 1109.

    Google Scholar 

  14. S. Wu,Polymer 26 (1985) 643.

    Google Scholar 

  15. A. Margolina andS. Wu,ibid. 29 (1988) 2170.

    Google Scholar 

  16. C. K. Riew, E. H. Rowe andA. R. Siebert,ACS Adv. Chem. Ser. 154 (1976) 326.

    Google Scholar 

  17. W. D. Bascom, R. Y. Ting, R. J. Moulton, C. K. Riew andA. R. Siebert,J. Mater. Sci. 16 (1981) 2657.

    Google Scholar 

  18. W. F. Brown andJ. E. Srawley, ASTM STP 381 (American Society for Testing and Materials, Philadelphia, PA, 1965) p. 13.

    Google Scholar 

  19. C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977).

    Google Scholar 

  20. M. A. Maxwell andA. F. Yee,Polym. Engng Sci. 21 (1981) 205.

    Google Scholar 

  21. H. J. Sue andA. F. Yee,J. Mater. Sci. 24 (1989) 1447.

    Google Scholar 

  22. H. J. Sue, R. A. Pearson, D. S. Parker, J. Huang andA. F. Yee,Polym. Preprints 30 (1988) 147.

    Google Scholar 

  23. A. S. Holik, R. P. Kambour, S. Y. Hobbs andD. G. Fink,Microstruct. Sci. 7 (1979) 357.

    Google Scholar 

  24. D. Heikens, S. D. Sjoerdsma andW. J. Coumans,J. Mater. Sci. 16 (1981) 429.

    Google Scholar 

  25. P. B. Bowden, in “The Physics of Glassy Polymers”, edited by R. N. Haward (Wiley, New York, 1973) Ch. 5.

    Google Scholar 

  26. H. L. Ewalds andR. J. H. Wanhill, “Fracture Mechanics” (Edward Arnold, London, 1984).

    Google Scholar 

  27. A. G. Evans, Z. B. Ahmad, D. G. Gilbert andP. W. R. Beaumont,Acta Metall 34 (1986) 79.

    Google Scholar 

  28. K. T. Faber andA. G. Evans,ibid. 31 (1983) 565.

    Google Scholar 

  29. Idem, ibid. 31 (1983) 577.

    Google Scholar 

  30. M. E. Boyce, A. S. Argon andD. M. Parks,Polymer 28 (1987) 1680.

    Google Scholar 

  31. R. J. M. Borggreve, R. J. Gaymans andJ. Schuijer,ibid. 30 (1989) 71.

    Google Scholar 

  32. R. J. M. Borggreve, R. J. Gaymans, andH. M. Eichenwald,ibid. 30 (1989) 78.

    Google Scholar 

  33. G. R. Irwin,Appl. Mater. Res. 3 (1964) 65.

    Google Scholar 

  34. R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, 3rd Edn (Wiley, New York, 1989).

    Google Scholar 

  35. A. S. Argon, in “ICF7: Advances in Fracture Research”, Vol. 4, edited by K. Samala, K. Ravi-Chander, D. M. R. Taplin and P. Rama Rao (Pergamon Press, New York, 1989).

    Google Scholar 

  36. A. J. Kinloch, D. L. Maxwell andR. J. Young,J. Mater. Sci. 20 (1985) 4169.

    Google Scholar 

  37. M. E. J. Dekkers, S. Y. Hobbs andV. H. Watkins,ibid. 23 (1988) 1225.

    Google Scholar 

  38. F. J. Guild andR. J. Young,ibid. 24 (1989) 2454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearson, R.A., Yee, A.F. Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26, 3828–3844 (1991). https://doi.org/10.1007/BF01184979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184979

Keywords

Navigation