Skip to main content
Log in

Nanoscale plastic deformation mechanism in single crystal aragonite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been performed to study the dynamic behaviors of single crystal aragonite under indentation, tension, and compression. The elastic modulus and hardness of single crystalline aragonite measured in our simulations are found in good agreement with experimentally measured values. Our simulation results show that the mechanical properties of aragonite crystal, including the elastic modulus, hardness, strength, and toughness, strongly depend on the crystallographic orientations and loading conditions. We have identified that this dependence is resulted from different deformation mechanisms, i.e., phase transformation, amorphous phase formation, dislocation, and twining. This work is an attempt to identify the deformation mechanisms in aragonite and to establish the relationship between the dominant deformation mechanisms and its crystallographic orientations and loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Menig R, Meyers MH, Meyers MA, Vecchio KS (2000) Acta Mater 48:2383

    Article  CAS  Google Scholar 

  2. Berg GW (1986) Nature 324:50

    Article  CAS  Google Scholar 

  3. Bridgman PW (1938) Am J Sci 239:7

    Article  Google Scholar 

  4. Tyburczy JA, Ahrens TJ (1986) Geophys J Res 91:4730

    Article  CAS  Google Scholar 

  5. Biellmann C, Guyot F, Gillet P, Reynard B (1993) Eur J Mineral 5:503

    CAS  Google Scholar 

  6. Fiquet G, Guyot F, Itie LP (1994) Am Mineral 79:15

    CAS  Google Scholar 

  7. Martinez I, Zhang J, Reeder RJ (1996) Am Mineral 81:611

    CAS  Google Scholar 

  8. Lin C-C, Liu L-G (1997) Phys Chem Miner 24:149

    Article  CAS  Google Scholar 

  9. Luth RW (2001) Contrib Mineral Petrol 141:222

    Article  CAS  Google Scholar 

  10. Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Am Mineral 86:997

    CAS  Google Scholar 

  11. Ivanov BA, Deutsch A (2002) Phys Earth Planet Inter 129:131

    Article  CAS  Google Scholar 

  12. Santillán J, Williams Q (2004) Am Mineral 89:1348

    Google Scholar 

  13. Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005) Am Mineral 90:667

    Article  CAS  Google Scholar 

  14. Ono S, Kikegawa T, Ohishi Y (2007) Am Mineral 92:1246

    Article  CAS  Google Scholar 

  15. Oganov AR, Glass CW, Ono S (2006) Earth Planet Sci Lett 241:95

    Article  CAS  Google Scholar 

  16. Liu J, Duan JJ, Ossowski MM, Mei WN, Smith RH, Hardy JR (2001) Chem Mineral 28:586

    Article  CAS  Google Scholar 

  17. Bearchell CA, Heyes DM (2002) Mol Simul 28:517

    Article  CAS  Google Scholar 

  18. Sekkal W, Taleb N, Zaoui A, Shahrour I (2008) Am Mineral 93:1608

    Article  CAS  Google Scholar 

  19. Miyake A, Kawano J (2010) J Phys: Condens Matter 22:225402

    Article  Google Scholar 

  20. Ruiz-Hernandez SE, Grau-Crespo R, Ruiz-Salvador AR, de Leeuw NH (2010) Geochim Cosmochim Acta 74:1320

    Article  CAS  Google Scholar 

  21. Han YH, Li H, Wong TY, Bradt RC (1991) J Am Ceram Soc 74:3129

    Article  CAS  Google Scholar 

  22. Liu LG, Chen CC, Lin CC, Yang YJ (2005) Phys Chem Miner 32:97

    Article  Google Scholar 

  23. Kearney C, Zhao Z, Bruet BJF, Radovitzky R, Boyce MC, Ortiz C (2006) Phys Rev Lett 96:2555051

    Article  Google Scholar 

  24. Hitoshi S, Musun K (2005) Phys Chem Chem Phys 7:691

    Article  Google Scholar 

  25. Huggins ML (1922) Phys Rev 19:354

    Article  CAS  Google Scholar 

  26. Huang Z, Li H, Pan Z, Wei Q, Chao YJ, Li XD (2011) Sci Rep 1:1

    Article  CAS  Google Scholar 

  27. Villiers De (1971) Am Mineral 56:758

    Google Scholar 

  28. Smith W, Forester TR, Todorov IT (2007) STFC Daresbury Laboratory Daresbury. Warrington WA44AD, Cheshire, UK

  29. Dick BG, Overhauser AW (1958) Phys Rev 112:90

    Article  CAS  Google Scholar 

  30. Gale J (2005) Handbook of materials modeling. Springer, Printed in the Netherlands, pp 1523–1558

  31. Pavese A, Catti M, Price GD, Jackson RA (1992) Phys Chem Miner 19:80

    Article  CAS  Google Scholar 

  32. Dove MT, Winkler B, Leslie M, Harris MJ, Salje EKH (1992) Am Mineral 77:244

    CAS  Google Scholar 

  33. Jackson RA, Price GD (1992) Mol Simul 9:175

    Article  CAS  Google Scholar 

  34. Catti M, Pavese A, Gale GD (1993) Phys Chem Miner 19:472

    Article  CAS  Google Scholar 

  35. Jackson RA, Meenan PA, Price GD, Roberts KJ, Telfer GB, Wilde PJ (1995) Mineral Mag 59:617

    Article  CAS  Google Scholar 

  36. Jackson RA (2001) Curr Opin Solid State Mater Sci 5:463

    Article  CAS  Google Scholar 

  37. Braybrook AL, Heywood BR, Jackson RA, Pitt K (2002) J Cryst Growth 243:336

    Article  CAS  Google Scholar 

  38. Pavese A, Catti M, Parker SC, Wall A (1996) Phys Chem Miner 23:89

    Article  CAS  Google Scholar 

  39. Fisler DK, Gale JD, Cygan RT (2000) Am Mineral 85:217

    CAS  Google Scholar 

  40. Archer TD, Birse SEA, Dove MT, Redfern SAT, Gale JD, Cygan RT (2003) Phys Chem Miner 30:416

    Article  CAS  Google Scholar 

  41. Barthelat F, Espinosa HD (2007) Exp Mech 47:311

    Article  Google Scholar 

  42. Barthelat F, Espinosa HD (2003) SEM Annual conference and exposition on experimental and applied mechanics, p 187

  43. Lu L, Chen X, Huang X, Lu K (2009) Science 323:607

    Article  CAS  Google Scholar 

  44. Zhang Y, Huang H (2008) Nanoscale Res Lett 4:34

    Article  Google Scholar 

  45. Li XY, Wei YJ, Lu L, Lu K, Gao HJ (2010) Nature 464:877

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation under Award CMMI-0855795 and DARPA under Award Number N66001-10-1-4018. Simulations were performed at the High Performance Computing Center at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Chen, Y. Nanoscale plastic deformation mechanism in single crystal aragonite. J Mater Sci 48, 785–796 (2013). https://doi.org/10.1007/s10853-012-6796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6796-1

Keywords

Navigation