Skip to main content
Log in

Numerical Assessment of the Role of Slip and Twinning in Magnesium Alloy AZ31B During Loading Path Reversal

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC–TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension–compression–tension along rolling direction, (2) tension–compression–tension along transverse direction, (3) compression–tension–compression along rolling direction, and (4) compression–tension–compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimental observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Such significant effect is mainly ascribed to the activity of twinning and detwinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Gharghouri, G.C. Weatherly, J.D. Embury, and J. Root: Phil. Mag., 1999, vol. A79, p. 1671–95.

    Article  Google Scholar 

  2. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plast, 2007, vol. 23, p. 44–86.

    Article  Google Scholar 

  3. L. Wu, S.R. Agnew, Y. Ren, D.W. Brown, B. Clausen, G.M. Stoica, H.R. Wenk, and P.K. Liaw: Mater. Sci. Eng., 2010, vol., A527, p. 7057–67.

    Article  Google Scholar 

  4. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew: Int. J. Plast, 2009, vol. 25, p. 861–80.

    Article  Google Scholar 

  5. M. Ghazisaeidi and D.R. Trinkle: Acta Mater., 2012, vol. 60, p. 1287–92.

    Article  Google Scholar 

  6. P.G. Partridge: Metall. Rev., 1973, vol. 12, p. 169–94.

    Google Scholar 

  7. J.X. Zhang, Q. Yu, Y.Y. Jiang, and Q.Z. Li: Int. J. Plast, 2011, vol. 27, p. 768–87.

    Article  Google Scholar 

  8. Q. Yu, J.X. Zhang, and Y.Y. Jiang: Phil. Mag. Lett., 2011, vol. 91, p. 757–65.

    Article  Google Scholar 

  9. S.H. Park, S.C. Hong, J.H. Lee, and C.S. Lee: Mater. Sci. Eng., 2012, vol. A532, p. 401–06.

    Article  Google Scholar 

  10. C.H. Cáceres, T. Sumitomo, and M. Veidt: Acta Mater., 2003, vol. 51, p. 6211–18.

    Article  Google Scholar 

  11. G. E. Mann, T. Sumitomo, C.H. Cáceres, and J.R. Griffiths: Mater. Sci. Eng., 2007, vol. A456, p. 138–46.

    Article  Google Scholar 

  12. S. Kleiner and P.J. Uggowitzer: Mater. Sci. Eng., 2004, vol. A379, p. 258–63.

    Article  Google Scholar 

  13. G.I. Taylor: J. Inst. Metals., 1938, vol. 62, p. 307–24.

    Google Scholar 

  14. C.S. Barrett and C.T. Haller: Trans. AIME, 1947, vol. 171, p. 246–55.

    Google Scholar 

  15. S. Mahajan and D.F. William: Int. Mater. Rev., 1973, vol. 18, p. 43–61.

    Article  Google Scholar 

  16. L. Wang, P. Eisenlohr, Y. Yang, T.R. Bieler, and M.A. Crimp: Scripta Mater., 2010, vol., 63, p. 827–30.

    Article  Google Scholar 

  17. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason: Metall. Mater. Trans. A, 2010, vol. 41A, p. 421–30.

    Article  Google Scholar 

  18. P.V. Van Houtte: Acta Metall. 1978, vol. 26, p. 591–604.

    Article  Google Scholar 

  19. C.N. Tomé, R.A. Lebensohn, and U.C. Kocks: Acta Metall. Mater. 1991, vol. 39, p. 2667–80.

    Article  Google Scholar 

  20. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater. 1993, vol. 41, p. 2611–24.

    Article  Google Scholar 

  21. S.R. Kalidindi: J. Mech. Phys. Solids, 1998, vol. 46, p. 267–90.

    Article  Google Scholar 

  22. A. Staroselsky and L. Anand: Int. J. Plast., 2003, vol. 19, p. 1843–64.

    Article  Google Scholar 

  23. B. Clausen, C.N. Tomé, D.W. Brown, and S.R. Agnew: Acta Mater., 2008, vol. 56, p. 2456–68.

    Article  Google Scholar 

  24. H. Wang, B. Raeisinia, Wu PD, Agnew SR, Tomé CN, Int J Solids Struct 2010;47:2905–17.

    Article  Google Scholar 

  25. Li M, Lou XY, Kim JH, Wagoner RH, Int J Plast 2010;26:820–58.

    Article  Google Scholar 

  26. Kim JH, Kim D, Lee YS, Lee MG, Chung K, Kim HY, Wagoner RH, Int J Plast 2013;50:66–93.

    Article  Google Scholar 

  27. D. Mohr, M.A. Chevin, and L. Greve: J. App. Mech., 2013, vol. 80, art. id. 061002.

  28. Hama T, Kitamura N, Takuda H, Mater Sci Eng 2013;A583:232–41.

    Article  Google Scholar 

  29. Proust G, Tomé CN, Kaschner GC, Acta Mater 2007;55:2137–48.

    Article  Google Scholar 

  30. Wang H, Wu PD, Tomé CN, Wang J, Mater Sci Eng 2012;A555:93–98.

    Google Scholar 

  31. Wang H, Wu PD, Wang J, Tomé CN, Int J Plast 2013;49:36–52.

    Article  Google Scholar 

  32. Wang H, Wu PD, Tomé CN, Huang Y, J Mech Phys Solids 2010;58:594–612.

    Article  Google Scholar 

  33. Wang H, Wu PD, Wang J, Int J Plast 47;2013:49–64.

    Article  Google Scholar 

  34. Wu W, Qiao H, An K, Guo XQ, Wu PD, Liaw PK, Int J Plast 2014;62:105–20.

    Article  Google Scholar 

  35. Qiao H, Agnew SR, Wu PD, Int J Plast 2015;65:61–84.

    Article  Google Scholar 

  36. Guo XQ, Wu W, Wu PD, Qiao H, An K, Liaw PK, Scripta Mater 2013;69:319–22.

    Article  Google Scholar 

  37. Wang H, Wu PD, Wang J, Comput Mater Sci 2015;96:214–18.

    Article  Google Scholar 

  38. Hama T, Kariyazaki Y, Hosokawa N, Fujimoto H, Takuda H, Mater Sci Eng 2012;A551:209–17.

    Article  Google Scholar 

  39. Hama T, Nagao H, Kuchinomachi Y, Takuda H, Mater Sci Eng 2014;A591:69–77.

    Article  Google Scholar 

  40. Piao K, Chung K, Lee MG, Wagoner RH, Metall. Mater. Trans. A 2012;43A:3300–13.

    Article  Google Scholar 

  41. Wang H, Wu PD, Gharghouri MA, Mater Sci Eng 2010;A527:3588–94.

    Article  Google Scholar 

  42. Wang H, Wu PD, Boyle KP, Neale KW, Int J Solids Struct 2011;48:1000–10.

    Article  Google Scholar 

  43. Wang H, Wu PD, Tomé CN, Wang J, Int J Solids Struct 2012;49:2155–67.

    Article  Google Scholar 

  44. Wang H, Clausen B, Tomé CN, Wu PD, Acta Mater 2013;61:1179–88.

    Article  Google Scholar 

  45. P.D. Wu, H. Wang, and K.W. Neale: Int. J. App. Mech., 2012, vol. 4, art. id. 1250024.

  46. Lee SY, Wang H, Gharghouri MA, Nayyeri G, Woo W, Shin E, Wu PD, Poole WJ, Wu W, An K, Acta Mater 2014;73:139–48.

    Article  Google Scholar 

  47. Eshelby JD, Proc. R. Soc. London 1957; A241:376–96.

    Article  Google Scholar 

  48. Martin E, Capolungo L, Jiang LA, Jonas JJ, Acta Mater 2010;58:3970–83.

    Article  Google Scholar 

  49. Simmons G and Wang H: Single Crystal Elastic Constants and Calculated Polycrystal Properties. MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  50. Agnew SR, Duygulu O, Int J Plast 2005;21:1161–93.

    Article  Google Scholar 

  51. Khan AS, Pandey A, Gnaupel-Herold T, Mishra RK, Int J Plast 2011;27:688–706.

    Article  Google Scholar 

  52. Hong SG, Park SH, Lee CS, J Mater Res 2010; 25:784–92.

    Article  Google Scholar 

  53. Hama T, Takuda H, Int J Plast 2011; 27:1072–92.

    Article  Google Scholar 

  54. T.W. Duerig, R. Zadno: in Engineering Aspects of Shape Memory Alloys, TW Duerig, ed., Butterworth-Heineman, London, 1990, pp. 369–93.

  55. Wagoner RH, Lim H, Lee MG, Int J Plast 2013;45:3–20.

    Article  Google Scholar 

  56. Yu Q, Wang J, Jiang Y, McCabe RJ, Tomé CN. Mater Res Lett 2014;2:82–88.

    Article  Google Scholar 

  57. Yu Q, Wang J, Jiang Y, McCabe RJ, Li N, Tomé CN. Acta Mater 2014;77:28–42.

    Article  Google Scholar 

  58. Beyerlein IJ, Wang J, Barnett MR, Tomé CN, Proc. R. Soc. A Math. Phys. Eng. Sci. 2012;468:1496–1520.

    Article  Google Scholar 

  59. Q. Yu, Y.Y. Jiang, and J. Wang: Philos. Mag. Lett., 2015. DOI:10.1080/09500839.2015.1022621.

  60. Mu S, Jonas JJ, Gottstein G, Acta Mater 2012;60:2043–53.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Ontario Ministry of Research and Innovation. HW and JW were supported by the US department of Energy, Office of Basic Energy Sciences (Project No: FWP-06SCPE401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huamiao Wang.

Additional information

Manuscript submitted November 17, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, P. & Wang, J. Numerical Assessment of the Role of Slip and Twinning in Magnesium Alloy AZ31B During Loading Path Reversal. Metall Mater Trans A 46, 3079–3090 (2015). https://doi.org/10.1007/s11661-015-2890-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2890-8

Keywords

Navigation