Skip to main content
Log in

Study on atomic-scale deformation mechanism based on nanoindentation of duplex full lamellar TiAl alloys with different orientation relationships

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of the orientation relationship between γ and α2 phases on the mechanical properties and microstructural evolution in duplex full lamellar TiAl alloys is investigated by the nanoindentation technique using molecular dynamics (MD) simulation method. In this paper, we construct separately the Blackburn orientation relationship: ⟨1–10⟩γ∥⟨11–20⟩α2 and {111}γ∥(0001)α2, the Parallel orientation relationship: [010]γ∥[1–210]α2 and (001)γ∥(0001)α2 as well as the Vertical orientation relationship: [001]γ∥[1–210]α2 and (100)γ∥(0001)α2 these three models. The results show that the effect of different orientation relationships cause variability in the fluctuation amplitude and magnitude of force, the accumulation shape and area of surface morphology, the atomic displacement, and the temperature on the substrate during the indentation process. The hardness and the modulus of elasticity for the alloys vary according to the orientation relationships, with the Blackburn orientation relationship having the highest hardness and modulus of elasticity, the Parallel orientation relationship having the lowest modulus of elasticity, and the Vertical orientation relationship having the lowest. The amount of deformation and defect evolution of the substrate during the indentation process are also affected by the orientation relationships, with the Blackburn orientation relationship model producing the most defects, the Vertical orientation relationship the next most, and the Parallel orientation relationship being the least.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Y.H. Yu, H.C. Kou, Y.C. Wang, M.Y. Jia, X.X. Xu, Z.L. Zhang, Y.R. Wang, J.S. Li, Formation of core-shell-like structure in β-solidified TiAl alloy and its effect on hot workability. Acta Mater. 255, 119036 (2023). https://doi.org/10.1016/j.actamat.2023.119036

    Article  Google Scholar 

  2. W.L. Zhou, C. Shen, X.M. Hua, L. Wang, Y.L. Zhang, F. Li, J.W. Xin, Y.H. Ding, The effect of vanadium on the microstructure and mechanical properties of TiAl alloy fabricated by twin-wire directed energy deposition-arc. Addit. Manuf. 62, 103382 (2023). https://doi.org/10.1016/j.addma.2022.103382

    Article  Google Scholar 

  3. G.M. Zheng, B. Tang, S.K. Zhao, W.Y. Wang, X.F. Chen, L. Zhu, J.S. Li, Evading the strength-ductility trade-off at room temperature and achieving ultrahigh plasticity at 800 °C in a TiAl alloy. Acta Mater. 225, 117585 (2022). https://doi.org/10.1016/j.actamat.2021.117585

    Article  Google Scholar 

  4. Y. Liu, J.S. Li, B. Tang, W.Y. Wang, M.J. Lai, L. Zhu, H.C. Kou, Formation mechanism of γ twins in β-solidified γ-TiAl alloys. J. Mater. Sci. Technol. 105, 164–171 (2022). https://doi.org/10.1016/j.jmst.2021.04.080

    Article  Google Scholar 

  5. Y. Zhang, Y.J. Lee, S. Chang, Y.Y. Chen, Y.C. Bai, J. Zhang, H. Wang, Microstructural modulation of TiAl alloys for controlling ultra-precision machinability. Int. J. Mach. Tools Manuf 174, 103851 (2022). https://doi.org/10.1016/j.ijmachtools.2022.103851

    Article  Google Scholar 

  6. B. Selvarajou, M.H. Jhon, R. Ramanujan, S.S. Quek, Temperature dependent anisotropic mechanical behavior of TiAl based alloys. Int. J. Plasticity 152, 103175 (2022). https://doi.org/10.1016/j.ijplas.2021.103175

    Article  Google Scholar 

  7. R.R. Xu, M.Q. Li, Y.H. Zhao, A review of microstructure control and mechanical performance optimization of γ-TiAl alloys. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.167611

    Article  Google Scholar 

  8. F. Appel, R. Wagner, Microstructure and deformation of two-phase γ-titanium aluminides. Mater. Sci. Eng. R. Rep. 22(5), 187–268 (1998). https://doi.org/10.1016/S0927-796X(97)00018-1

    Article  Google Scholar 

  9. L.M. Hsiung, T.G. Nieh, Creep deformation of fully lamellar TiAl controlled by the viscous glide of interfacial dislocations. Intermetallics 7(7), 821–827 (1999). https://doi.org/10.1016/S0966-9795(98)00135-6

    Article  Google Scholar 

  10. Z. Liu, Y.R. Zhang, L. Bai, L.H. Jiang, Z.H. Guo, Y.J. Liu, Z.B. Zhao, Q. Zhang, D.Z. Yang, Effects of lamellar α orientation on the mechanical behavior of Ti–6Al–4V alloy manufactured by electron beam directed energy deposition. Mater. Sci. Eng. A 885, 145559 (2023). https://doi.org/10.1016/j.msea.2023.145559

    Article  Google Scholar 

  11. Y.M. Qi, H.M. Xu, T.W. He, M.L. Feng, Effect of crystallographic orientation on mechanical properties of single-crystal CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 814, 141196 (2021). https://doi.org/10.1016/j.msea.2021.141196

    Article  Google Scholar 

  12. F. Wen, J.Q. Chen, S.B. Zhong, Z.X. Zhou, S. Han, H.G. Wei, Y.H. Zhang, W.R. Li, R.G. Guan, Effect of crystal orientations and precipitates on the corrosion behavior of the Al-Cu alloy using single crystals. J. Alloys Compd. 890, 161858 (2022). https://doi.org/10.1016/S1003-6326(22)66065-5

    Article  Google Scholar 

  13. D.-Q. Doan, Effects of crystal orientation and twin boundary distance on mechanical properties of FeNiCrCoCu high-entropy alloy under nanoindentation. Mater. Chem. Phys. 291, 126725 (2022). https://doi.org/10.1016/j.matchemphys.2022.126725

    Article  Google Scholar 

  14. K. Wang, X. Chen, S.Y. Huang, X.Y. Chen, Z.M. Wang, Y. Huang, Diffusion behavior determined by the new n-body potential in highly immiscible W/Cu system through molecular dynamics simulations. J. Mater. Res. Technol. 24, 3731–3745 (2023). https://doi.org/10.1016/j.jmrt.2023.04.068

    Article  Google Scholar 

  15. Z. Fang, Y.H. Feng, Y.D. Yan, Y.Q. Geng, Molecular dynamics simulation study on the effect of crystal orientation on bi-crystal gold nanocrystals in nanoskiving process. J. Manuf. Process. 81, 224–235 (2022). https://doi.org/10.1016/j.jmapro.2022.06.071

    Article  Google Scholar 

  16. A.A. Volinsky, W.W. Gerberich, Nanoindentaion techniques for assessing mechanical reliability at the nanoscale. Microelectron. Eng. 69(2–4), 519–527 (2003). https://doi.org/10.1016/S0167-9317(03)00341-1

    Article  Google Scholar 

  17. J.P. Wang, J.W. Liang, Z.X. Wen, Z.F. Yue, Y. Peng, Unveiling the local deformation behavior of typical microstructures of nickel-based single crystals under nanoindentation. Mech. Mater. 166, 104204 (2022). https://doi.org/10.1016/j.mechmat.2021.104204

    Article  Google Scholar 

  18. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  Google Scholar 

  19. L. Zhang, J.F. Sun, A.H. Ngan, Z.L. Ning, H.B. Fan, Y.J. Huang, Heterogeneity of microstructures in a Cu–Zr based amorphous alloy composite reinforced by crystalline phases. Compos. Part B Eng. 262, 110823 (2023). https://doi.org/10.1016/j.compositesb.2023.110823

    Article  Google Scholar 

  20. M. Blackburn, Some Aspects of Phase Transformations in Titanium Alloys (Boeing Scientific Research Labs., Seattle, 1970), pp.633–642

    Google Scholar 

  21. X.D. Wang, Y.D. Shen, S.X. Song, P. Liu, Q. An, K.M. Reddy, Atomic-scale understanding of the γ/α2 interface in a TiAl alloy. J. Alloys Compd. 846, 156381 (2020). https://doi.org/10.1016/j.jallcom.2020.156381

    Article  Google Scholar 

  22. H. Inui, M.H. Oh, A. Nakamura, M. Yamaguchi, Ordered domains in TiAl coexisting with Ti3Al in the lamellar structure of Ti-rich TiAl compounds. Philos. Mag. A 66(4), 539–555 (1992). https://doi.org/10.1080/01418619208201574

    Article  ADS  Google Scholar 

  23. Q.W. Guo, H. Hou, Y. Pan, X.L. Pei, Z. Song, P.K. Liaw, Y.H. Zhao, Hardening-softening of AlO3CoCrFeNi high-entropy alloy under nanoindentation. Mater. Des. (2023). https://doi.org/10.1016/j.matdes.2023.112050

    Article  Google Scholar 

  24. N. Shuichi, Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 103, 1–46 (1991). https://doi.org/10.1143/PTPS.103.1

    Article  MathSciNet  Google Scholar 

  25. Z.Y. Zhao, J.X. Liu, Probing plastic mechanisms in gradient dual-phase high-entropy alloys under nanoindentation. J. Alloys Compd. 946, 169424 (2023). https://doi.org/10.1016/j.jallcom.2023.169424

    Article  Google Scholar 

  26. H.X. Wang, S. Gao, R.K. Kang, X.G. Guo, H.G. Li, Mechanical load-induced atomic-scale deformation evolution and mechanism of SiC polytypes using molecular dynamics simulation. Nanomaterials 12(14), 2489 (2022). https://doi.org/10.3390/nano12142489

    Article  PubMed  PubMed Central  Google Scholar 

  27. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(1), 98 (1967). https://doi.org/10.1103/PhysRev.159.98

    Article  ADS  Google Scholar 

  28. M. Zheng, D.F. Qu, Z.X. Zhu, W.H. Chen, Z. Zhang, Z. Wu, L.J. Wang, X.Z. Ma, Study on nanoscale friction behavior of TiC/Ni composites by molecular dynamics simulations. Coatings 12(8), 1168 (2022). https://doi.org/10.3390/coatings12081168

    Article  Google Scholar 

  29. J.M. Li, Y.H. Huang, Y.Q. Zhou, F.L. Zhu, Role of boron nitride nanosheet coatings on aluminum substrates during the nanoindentation from the atomic perspective. Appl. Surf. Sci. 608, 155126 (2023). https://doi.org/10.1016/j.apsusc.2022.155126

    Article  Google Scholar 

  30. C. Chen, H.T. Li, H.G. Xiang, X.H. Peng, Molecular dynamics simulation on B3-GaN thin films under nanoindentation. Nanomaterials 8(10), 856 (2018). https://doi.org/10.3390/nano8100856

    Article  PubMed  PubMed Central  Google Scholar 

  31. D.P. Hua, W.T. Ye, Q. Jia, Q. Zhou, Q.S. Xia, J.Q. Shi, Y.Y. Deng, H.F. Wang, Molecular dynamics simulation of nanoindentation on amorphous/amorphous nanolaminates. Appl. Surf. Sci. 511, 145545 (2020). https://doi.org/10.1016/j.apsusc.2020.145545

    Article  Google Scholar 

  32. J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566 (1989). https://doi.org/10.1103/PhysRevB.39.5566

    Article  ADS  Google Scholar 

  33. Z.P. Hao, R.R. Cui, Y.H. Fan, J.Q. Lin, Diffusion mechanism of tools and simulation in nanoscale cutting the Ni–Fe–Cr series of Nickel-based superalloy. Int. J. Mech. Sci. 150, 625–636 (2019). https://doi.org/10.1016/j.ijmecsci.2018.10.058

    Article  Google Scholar 

  34. M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46(5), 2727 (1992). https://doi.org/10.1103/PhysRevB.46.2727

    Article  ADS  Google Scholar 

  35. Y.-M. Kim, B.-J. Lee, Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems. Acta Mater. 56(14), 3481–3489 (2008). https://doi.org/10.1016/j.actamat.2008.03.027

    Article  ADS  Google Scholar 

  36. Y.-K. Kim, H.-K. Kim, W.-S. Jung, B.-J. Lee, Atomistic modeling of the Ti–Al binary system. Comput. Mater. Sci. 119, 1–8 (2016). https://doi.org/10.1016/j.commatsci.2016.03.038

    Article  Google Scholar 

  37. M.G. Elkhateeb, Y.C. Shin, Molecular dynamics-based cohesive zone representation of Ti6Al4V/TiC composite interface. Mater. Des. 155, 161–169 (2018). https://doi.org/10.1016/j.matdes.2018.05.054

    Article  Google Scholar 

  38. K. Maekawa, A. Itoh, Friction and tool wear in nano-scale machining—a molecular dynamics approach. Wear 188(1–2), 115–122 (1995). https://doi.org/10.1016/0043-1648(95)06633-0

    Article  Google Scholar 

  39. R.C. Feng, Z.H. Shao, S.Z. Yang, H. Cao, H.Y. Li, C.L. Lei, J. Zhang, Material removal behavior of nanoscale shear cutting and extrusion cutting of monocrystalline γ-TiAl alloy. Int. J. Adv. Manuf. Technol. 119(9–10), 6729–6742 (2022). https://doi.org/10.1007/s00170-021-08536-8

    Article  Google Scholar 

  40. Z.W. Chen, X. Wang, V. Bhakhri, F. Giuliani, A. Atkinson, Nanoindentation of porous bulk and thin films of LaO.6SrO.4CoO.2FeO.8O3− δ. Acta Mater. 61(15), 5720–5734 (2013). https://doi.org/10.1016/j.actamat.2013.06.016

    Article  ADS  Google Scholar 

  41. Y. He, R.B. Schwarz, A. Migliori, S.H. Whang, Elastic constants of single crystal γ–TiAl. J. Mater. Res. 10(5), 1187–1195 (1995). https://doi.org/10.1557/JMR.1995.1187

    Article  ADS  Google Scholar 

  42. S. Xu, Q. Wan, Z.D. Sha, Z.S. Liu, Molecular dynamics simulations of nano-indentation and wear of the γTi-Al alloy. Comput. Mater. Sci. 110, 247–253 (2015). https://doi.org/10.1016/j.commatsci.2015.08.045

    Article  Google Scholar 

  43. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  ADS  Google Scholar 

  44. Z.Y. Qian, J. Risan, B. Stadnick, G.B. McKenna, Apparent depth-dependent modulus and hardness of polymers by nanoindentation: investigation of surface detection error and pressure effects. J. Polym. Sci. Part B Polym. Phys. 56(5), 414–428 (2018). https://doi.org/10.1002/polb.24554

    Article  ADS  Google Scholar 

  45. Y. Song, S.-Y. Tang, J. Xu, O.N. Mryasov, A.J. Freeman, C. Woodward, D.M. Dimiduk, Ti-Ti bonding in γ-TiAl and f.c.c. Ti. Philos. Mag. Part B 70, 987–1002 (1994). https://doi.org/10.1080/01418639408240267

    Article  ADS  Google Scholar 

  46. S. Banumathy, P. Ghosal, A.K. Singh, The structure of the Ti3Al Phase in Ti-Al and Ti-Al-Nb alloys. J. Alloys Compd. 394(1–2), 181–185 (2005). https://doi.org/10.1002/chin.200532003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 52265025), the Youth Innovation Promotion Association CAS (2022425), the Open Project of State Key Laboratory of Solid Lubrication (LSL-2215), the Gansu Provincial Natural Science Foundation (23JRRA811), and the Science and Technology Innovation Fund for Students of Lanzhou University of Technology (kcjj23127).

Author information

Authors and Affiliations

Authors

Contributions

BY: conception and design of study, writing—original draft. MZ: writing—review and editing. DQ: revising the manuscript critically for important intellectual content. XW: project administration, formal analysis. WC: investigation and methodology. ZZ: writing—review and editing, resources, and funding acquisition. JC: data curation, and resources.

Corresponding authors

Correspondence to Min Zheng or Jun Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, B., Zheng, M., Qu, D. et al. Study on atomic-scale deformation mechanism based on nanoindentation of duplex full lamellar TiAl alloys with different orientation relationships. Appl. Phys. A 130, 151 (2024). https://doi.org/10.1007/s00339-024-07320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07320-1

Keywords

Navigation