Skip to main content
Log in

Modification of mechanical properties of Kevlar fibre by polymer infiltration

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

While high-performance organic fibres such as poly (para phenylene benzobisthiazole) and Kevlar possess excellent mechanical properties under axial tension, their strength under compression is generally poor. This study focuses on a polymer infiltration approach to modify the mechanical properties of the Kevlar 49 fibre in tension as well as compression, in which various polymeric resins are infiltrated in an opened fibrillar network of Kevlar single filaments. Opening was achieved using concentrated sulfuric acid, which resulted in a strength loss at high acid concentrations. However, compared to the acid-treated fibre, both the tensile strength and strain-to-failure of the fibres were found to increase after infiltration with epoxy resins and bismaleimide polymers. Polymer infiltration also resulted in a significant improvement in the compressive strength of the Kevlar fibre, with the bismaleimide performing better than the epoxy resins. Plasma modification using ammonia was also used to enhance interfibrillar adhesion by incorporating reactive amine groups on the fibril surface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H.Yang (ed.), “Kevlar Aramid Fiber”, (Wiley, Chichester, 1993).

    Google Scholar 

  2. S. J.deTeresa, R. J.Farris and R. S.Porter, J. Mater. Sci. 23 (1988) 1886.

    Article  CAS  Google Scholar 

  3. J. H.Greenwood and P. G.Rose, 9 (1974) 1809.

    Article  CAS  Google Scholar 

  4. S. V.Kulkarni, J. S.Rice and B. W.Rosen, Composites 6 (1975) 217.

    Article  CAS  Google Scholar 

  5. L.Sawyer and M.Jaffe, in “High Performance Polymers”, edited by E. Baer and A. Moet (Hanser, New York, 1991) p. 55.

    Google Scholar 

  6. L.Konapasek and J. W. S.Hearle, J. Appl. Polym. Sci. 21 (1977) 2791.

    Article  Google Scholar 

  7. M.Panar, P.Avakian, R. C.Blume and K. H. J.Gardener, Polym. Sci. Polym. Phys. Ed. 21 (1983) 1955.

    Article  CAS  Google Scholar 

  8. M. G.Dobb, D. J.Johnson, A.Majeed and B. P.Saville, Polymer 20 (1979) 1284.

    Article  CAS  Google Scholar 

  9. R. J.Morgan, C. O.Pruneda and W. J.Steele, Polym. Sci. Polym. Phys. Ed. 20 (1983) 1757.

    Article  Google Scholar 

  10. Y. C.Lee and U.Santosh, Polym. Eng. Sci. 33 (1993) 907.

    Article  CAS  Google Scholar 

  11. Idem, US Air Force Technical Report, WRDC-TR-90-4023 (1990).

  12. H. E.Daniels, Proc. R. Soc. Lond. 183 (1945) 405.

    Article  Google Scholar 

  13. S. L.Phoenix, in “Proceedings of 9th US National Congress of Applied Mechanics”, Book H0028 edited by Y. H. Pao (ASME, New York, 1982) p. 219.

    Google Scholar 

  14. S. L.Phoenix, P.Schwartz and H. H.Robinson IV, Compos. Sci. Technol. 32 (1988) 81.

    Article  CAS  Google Scholar 

  15. P.Schwartz, M.Rosenshaft and H. D.Wagner, J. Mater. Sci. Lett. 4 (1985) 1409.

    Article  CAS  Google Scholar 

  16. C. S.Wang, J.Burkett, S.Bhattacharya, H. H.Chuah and F. E. Arnold, Proc. ACS Div. Polym. Mater. Sci. Eng. 60 (1989) 767.

    CAS  Google Scholar 

  17. H. H.Chuah, T. T.Tsai, K. H.Wei, C. S.Wang and F. E.Arnold, 60 (1989) 517.

    CAS  Google Scholar 

  18. Y.Wu and G. C.Tesoro, J. Appl. Polym. Sci. 31 (1986) 1041.

    Article  CAS  Google Scholar 

  19. W.Sweeny, J. Polym. Sci. Polym. Chem. Ed. 30 (1992) 1111.

    Article  CAS  Google Scholar 

  20. F. J.McGarry and J. E.Moalli, Polymer 32 (1991) 1816.

    Article  CAS  Google Scholar 

  21. J. R.Brown, P. J. C.Chappel and Z. J.Mathys, J. Mater. Sci. 26 (1991) 4172.

    Article  CAS  Google Scholar 

  22. R.Benrashid and G. C.Tesoro, Text. Res. J. 60 (1990) 334.

    Article  CAS  Google Scholar 

  23. F. P. M.Mercx and P. J.Lemstra, Polym. Commun. 31 (1990) 252.

    Google Scholar 

  24. R. E.Allred, E. W.Merril and D. K.Roylance, in “Molecular Characterization of Composite Interfaces”, edited by H. Ishida and G. Kumar (Plenum Press, New York, 1984) p. 333.

    Google Scholar 

  25. Z-F.Li and A. N.Netravali, J. Appl. Polym. Sci. 44 (1992) 319.

    Article  CAS  Google Scholar 

  26. 44 (1992) 333.

    Article  CAS  Google Scholar 

  27. V. Ravichandran, PhD Thesis, Cornell University (1991).

  28. M. G. Dobb, in “Strong Fibers”, Handbook of Composites, Vol. 1, edited by W. Watt and B. V. Perov (Elsevier Science North-Holland, 1985) p. 673.

  29. R. Farris, Y. Cohen and S. J. de Teresa, US Pat. 4842924 (1989).

  30. J. V.Crivello, J. Polym. Sci. Polym. Chem. Ed. 11 (1973) 1185.

    Article  CAS  Google Scholar 

  31. A.Mathur and A. N.Netravali, Adv. Compos. Lett. 3 (1994) 13.

    Article  Google Scholar 

  32. P.Schwartz, H. D.Wagner and S. L.Phoenix, J. Compos. Mater. 18 (1984) 312.

    Article  Google Scholar 

  33. A. N.Netravali, P.Schwartz, S. L.Phoenix, Polym. Compos. 10 (1989) 385.

    Article  CAS  Google Scholar 

  34. S. R.Allen, J. Mat. Sci. 22 (1988) 853.

    Article  Google Scholar 

  35. Y.Cohen and E. L.Thomas, Polym. Eng. Sci. 25 (1985) 1093.

    Article  CAS  Google Scholar 

  36. R. J.Morgan and N. L.Butler, Polym. Bull. 27 (1992) 689.

    Article  CAS  Google Scholar 

  37. R. J. Morgan, C. O. Pruneda, N. L. Butler, F. M. kong, L. Caley and R. L. Moore, in “Proceedings of the 29th National SAMPE Symposium” (1984) p. 891.

  38. A. N.Netravali and W.Sachse, Polym. Compos. 12 (1991) 370.

    Article  CAS  Google Scholar 

  39. K.Kupper and P.Schwartz, J. Adh. Sci. Tech. 5 (1991) 165.

    Article  Google Scholar 

  40. U.Gaur and B.Miller, Compos. Sci. Technol. 34 (1989) 35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, A., Netravali, A.N. Modification of mechanical properties of Kevlar fibre by polymer infiltration. JOURNAL OF MATERIALS SCIENCE 31, 1265–1274 (1996). https://doi.org/10.1007/BF00353106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353106

Keywords

Navigation