Skip to main content
Log in

The nanostructure of the cell wall of softwoods and its functions in a living tree

Nanostruktur der Zeilwand des Nadelholzes und ihre Funktion im lebenden Baum

  • Originalarbeiten
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Trees are large engineering structures that have to withstand major wind and static forces and translocate considerable volumes of water. Natural selection has over millions of years optimised tree structure to maximise survival of the species. Naturally this process does not necessarily optimise the properties of the resultant lumber such as hardness, stiffness and strength. Such wood properties can now be improved by genetic engineering and tree breeding. If this is done without understanding the contribution of wood structure to tree survival, this can lead to increased susceptibility to windthrow, splitting and branch damage in the standing tree and internal checking and collapse during wood drying. As a first step to quantifying these potential problems this paper reviews latest findings on the nanostructure of the cell wall of softwoods and then discusses the probable relationships between microfibril directions in the secondary cell wall layers and potential threats to the survival of trees such as excessive vibration and crack propagation.

Zusammenfassung

Bäume können als große Holzkonstruktionen aufgefaßt werden, die starken statischen und Windbelastungen ausgesetzt sind sowie große Mengen an Wasser transportieren. Die natürliche Selektion hat über Jahrmillionen die Holzstruktur und damit das Überleben der Arten optimiert. Dieser Prozess optimierte nicht notwendigerweise die resultierenden Eigenschaften von Schnittholz wie Härte, Steifheit und Festigkeit. Solche Holzeigenschaften können inzwischen durch Züchtung und genetische Manipulation verbessert werden. Werden diese Versuche unternommen, ohne die Bedeutung der Holzstruktur für das Überleben des Baumes zu kennen, so kann das zu verstärkter Anfälligkeit für Windbruch, Risse und Astschäden am stehenden Baum sowie zu Rißbildung und Kollaps während des Trocknens führen. Als ersten Schritt zur Quantifizierung dieser möglichen Probleme gibt diese Arbeit einen Überblick über jüngste Erkenntnisse zur Nanostruktur der Zellwand in Nadelholz. Daran anschließend erfolgt eine Diskussion wahrscheinlicher Beziehungen zwischen der Orientierung der Mikrofibrillen in den Sekundärwänden und möglichen Gefahren für das Überleben des Baumes wie übermäßige Vibrationen und Rißfortpfianzung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe H, Ohtani J, Fukuzawa K (1991) FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids, IAWA bull. n.s. 12(4): 431–438

    Google Scholar 

  • Barber NF, Meylan BA (1964) The anisotropic shrinkage of wood, Holzforschung 18: 146–156

    Google Scholar 

  • Bailey IW (1938) Cell wall structure of higher plants. Industrial Eng. Chem. 30: 40–47

    Article  CAS  Google Scholar 

  • Booker RE (1993) The importance of the S3 cell wall layer in collapse and wood hardness. Proceedings of the 24th Forest Products Research Conference, 15–18 November 1993, CSIRO Division of Forest Products, Clayton, Victoria, Australia. 3/17, 1–13

    Google Scholar 

  • Booker RE (1995) The reason for the microfibril orientations in the cell walls of trees. Recent Advances in Wood Anatomy, Eds, L.A. Donaldson, A.P. Singh, B.G. Butterfield, J. Whitehouse. NZ Forest Research Institute Ltd, 273–282

  • Braun HJ (1992) Bau und Leben der Bäume. (3rd edn). Verlag Rombach, Freiburg

    Google Scholar 

  • Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol. 2(4): 268–278

    Article  Google Scholar 

  • Cave ID (1969) The longitudinal modulus ofPinus radiata. Wood Sci. Technol. 3: 40–48

    Article  Google Scholar 

  • Cave ID (1978) Modelling moisture-related mechanical properties of wood. Part 2: Computation of properties of a model of wood and comparison with experimental data. Wood Sci, Techn. 12: 127–139

    CAS  Google Scholar 

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. For. Prod. Journal, 44(5): 43–48

    Google Scholar 

  • Chafe SC (1974) On the lamellate structure of the S2 layer. Protoplasma 79: 144–158

    Article  Google Scholar 

  • Chafe SC (1977) Radial dislocations in the fibre wall ofEucalyptus regnans trees of high growth stress. Wood Sci. Technol. 11: 69–77

    Article  Google Scholar 

  • Core HA, Coté WA, Day AC (1979) Wood Structure and Identification (2nd edn.), Syracuse University Press, Syracuse, N.Y.

    Google Scholar 

  • Côté WA (1968) The structure of wood and the wood cell wall. In: Kollmann, F.F.R., Côté, W.A. Principles of Wood Science and Technology. Vol 1: Solid Wood. Springer-Verlag, New York

    Google Scholar 

  • Donaldson L (1992) Within- and between-tree variation in microfibril angle inPinus radiata. NZ J. For. Sci. 22: 77–86

    Google Scholar 

  • Donaldson L (1996) Clonal variation in the fracture properties of radiata pine wood. Recent Advances in Wood Anatomy, Eds. L.A. Donaldson, A.P. Singh, B.G. Butterfield, J. Whitehouse. NZ Forest Research Institute Ltd, 283–291

  • Fujita M, Harada H (1991) Ultrastructure and Formation of Wood. In: Hon, D.N.S., Shiraishi N. (Ed.). Wood and Cellulosic Chemistry. Marcel Dekker Inc. New York and Basel

    Google Scholar 

  • Kerr AJ, Goring DAI (1975) The ultrastructural arrangement of the wood cell wall. Cellul. Chem. Technol. 9, 563–573

    Google Scholar 

  • Harada HY, Côté WA (1985) Structure of Wood. In: Biosynthesis and biodegradation of wood components (ed. T. Higuchi): 1–42. Acad. Press, Orlando

    Google Scholar 

  • Larsen UJ, Winandy JE, Green F (1995) A proposed model of the tracheid cell wall of Southern yellow pine having an inherent radial structure in the S2 layer. Mater. & Organismen 29(3): 197–209

    Google Scholar 

  • Liese W (1970) Elektronenmikroskopie des Holzes. In: Freund, FL Handbuch der Mikroskopie in der Technik. Vol 1, Part 1. Umschau-Verlag, Frankfurt a.M.

    Google Scholar 

  • Mark RE (1967) Cell wall mechanics of tracheids. Yale University Press, New Haven

    Google Scholar 

  • Mattheck C (1991) Trees, the mechanical design. Springer Verlag, Berlin

    Google Scholar 

  • Meidner H, Sheriff DW (1976) Water and Plants. Tertiary biology series, Blackie, London

    Google Scholar 

  • Parham RA, Coté WA (1971) Distribution of lignin in normal and compression wood ofPinus taeda L. Wood Sci. Technol. 5: 49–62

    Article  CAS  Google Scholar 

  • Revol JF, Gancet C, Goring DAI (1982) Orientation of cellulose crystallisation in the S2 layer of spruce and birch wood cells. Wood Sci. 14(3): 120–126

    CAS  Google Scholar 

  • Ruel K, Barnoud F, Goring DAI (1978) Lamellation in the S2 layer of softwood tracheids as demonstrated by scanning transmission electron microscopy. Wood Sci. Technol. 12: 287–291

    Article  Google Scholar 

  • Scallan AM (1974) The structure of the cell wall of wood — a consequence of anisotropic inter-microfibrillar bonding Wood Sci. 6: 266–271

    Google Scholar 

  • Schwarze FWMR, Engels J (1997) Cavity formation and the exposure of peculiar structures in the secondary wall (S2) of tracheids and fibres by wood degrading basidiomycetes. Holzforschung. (In press)

  • Sell J (1994a) Mechanical aspects of new SEM observations on the fibril/matrix structure of the S2 layer of softwood tracheids. Proceedings Congress “Plant Biomechanics”, Montpellier, France. September 1994, pp 163–164

  • Sell J (1994b) Confirmation of a sandwich-like model of the cell wall of softwoods by light microscope. Holz Roh-Werkstoff57: 234

    Article  Google Scholar 

  • Sell J, Zimmermann T (1993a) The structure of the cell wall layer S2-field-emission SEM studies on transverse-fracture surfaces of the wood of spruce and white fir. Forsch, u. Arbeitsberichte EMPA — Abt. Holz, No. 115/28. (German with English Abstract)

  • Sell J, Zimmermann T (1993b) Radial fibril agglomerations of the S2 on transverse fracture surfaces of tracheids of tension-loaded spruce and white fir. Holz Roh-Werkstoff 51: 384

    Article  Google Scholar 

  • Singh A (1996) Ultrastructural features of compression wood cells in relation to bacterial decay inPinus radiata. Recent Advances in Wood Anatomy, Eds. L.A. Donaldson, A.P. Singh, B.G. Butterfield, J. Whitehouse. NZ Forest Research Institute Ltd, 400–407

  • Stone JE, Scallan AM, Ahlgren PAV (1971) The ultrastructural distribution of lignin in tracheid cell walls. Tappi 54: 1527–1530

    CAS  Google Scholar 

  • Wardrop AB (1954) The fine structure of the conifer tracheid. Holzforschung 8: 12–29

    Article  CAS  Google Scholar 

  • Zimmermann T, Sell J (1997) The fine structure of the cell wail on transverse fracture surfaces of longitudinally tension-loaded hardwoods. Research & Work Reports, EMPA-Dept Wood, No. 115/35, 32 p

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booker, R.E., Sell, J. The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz als Roh-und Werkstoff 56, 1–8 (1998). https://doi.org/10.1007/s001070050255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001070050255

Keywords

Navigation