Skip to main content
Log in

Work-hardening stages of AA1070 and AA6060 after severe plastic deformation

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Based on the concept of work-hardening for fcc metals, the commercially pure aluminum AA1070 (soft annealed) and the aluminum alloy AA6060 (peak-aged) were investigated. Equal-channel angular pressing (ECAP) was used to introduce very high strains and an ultrafine-grained microstructure. Compression tests were performed in a wide range of strain rates between 10−4 and 103 s−1 subsequently. The results show that strain path and the corresponding dislocation structure are important for the post-ECAP yielding and the following hardening response. Furthermore, the precipitates of the alloy clearly constrain the interactions of dislocations in work-hardening stage III—causing lower strain rate sensitivity and retarding the process of grain refinement as well. If compared to the pure aluminum, the precipitates avoid hardening in stage V where an additional rate and temperature-dependent effect contributes—supposedly caused by the interaction of deformation-induced vacancies and dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Seeger A (1954) Philos Mag 45:771

    CAS  Google Scholar 

  2. Orowan E (1934) Z Phys 89:634

    Article  ADS  Google Scholar 

  3. Polanyi M (1934) Z Phys 89:660

    Article  CAS  ADS  Google Scholar 

  4. Taylor GI (1934) Proc R Soc Lond A 145:362

    Article  CAS  ADS  Google Scholar 

  5. Seeger A (1958) In: Flügge S (ed) Handbuch der Physik VII 2. Springer, Berlin

    Google Scholar 

  6. Friedel J (1955) Philos Mag 46:1169–1186

    CAS  Google Scholar 

  7. Diehl J (1956) Z Metallkd 47:331

    CAS  Google Scholar 

  8. Hirsch PB, Mitchell TE (1967) Can J Phys 45:663

    CAS  Google Scholar 

  9. Knoell H, Macherauch E (1969) Z Metallkd 60:399

    CAS  Google Scholar 

  10. Mecking H, Kocks UF (1981) Acta Metall 29:1865

    Article  CAS  Google Scholar 

  11. Mughrabi H (1983) Acta Metall 31:1367

    Article  CAS  Google Scholar 

  12. Prinz FB, Argon AS (1984) Acta Metall 32:1021

    Article  CAS  Google Scholar 

  13. Zehetbauer MJ, Seumer V (1993) Acta Metall Mater 41:577

    Article  CAS  Google Scholar 

  14. Argon AS, Haasen P (1993) Acta Metall Mater 41:3289

    Article  CAS  Google Scholar 

  15. Les P, Zehetbauer MJ, Rauch EF, Kopacz I (1999) Scr Mater 4:523

    Article  Google Scholar 

  16. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58:33

    Article  Google Scholar 

  17. Segal VM, Reznikov AE, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 1:99

    Google Scholar 

  18. Wei Q (2007) J Mater Sci 42:1709. doi:10.1007/s10853-006-0700-9

    Article  CAS  ADS  Google Scholar 

  19. Iwahashi Y, Wang JT, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143

    Article  CAS  Google Scholar 

  20. Segal VM (2004) Mater Sci Eng A 386:269

    Google Scholar 

  21. Barber RE, Dudo T, Yasskin PB, Hartwig KT (2004) Scr Mater 51:373

    Article  CAS  Google Scholar 

  22. Hockauf M, Meyer LW, Nickel D, Alisch G, Lampke T, Wielage B, Krüger L (2008) J Mater Sci 43:7409. doi:10.1007/s10853-008-2724-9s

    Article  CAS  ADS  Google Scholar 

  23. Hockauf M, Meyer LW, Halle T, Kuprin C, Hietschold M, Schulze S, Krüger L (2006) Int J Mater Res 97:1392

    CAS  Google Scholar 

  24. Qian T, Marx M, Schüler K, Hockauf M, Vehoff H (2010) Acta Mater 58:2112

    Article  CAS  Google Scholar 

  25. Meyer LW, Krüger L (2000) In: Kuhn HM (ed) Mechanical testing and evaluation, vol 8. ASM International, Materials Park

    Google Scholar 

  26. Gray GT III (2000) In: Kuhn HM (ed) Mechanical testing and evaluation, vol 8. ASM International, Materials Park

    Google Scholar 

  27. Wang N, Wang Z, Aust KT, Erb U (1997) Acta Mater 45:1655

    Article  CAS  Google Scholar 

  28. Dalla Torre F, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957

    Article  CAS  Google Scholar 

  29. Koneva NA (2006) In: Altan BS (ed) Severe plastic deformation: toward bulk production of nanocrystalline materials. Nova Science Publisher, New York

    Google Scholar 

  30. Hughes DA, Hansen N (1997) Acta Mater 45:3871

    Article  CAS  Google Scholar 

  31. Matsuda K, Gamada H, Fujii K, Uetani Y, Sato T, Kamio A, Ikeno S (1998) Metall Mater Trans A 29:1161

    Article  Google Scholar 

  32. Roven HJ, Liu M, Werenskiold JC (2008) Mater Sci Eng A 483–484:54

    Google Scholar 

  33. Gutierrez-Urrutia I, Muñoz-Morris MA, Morris DG (2005) Mater Sci Eng A 394:399

    Article  Google Scholar 

  34. Pippan R, Wetscher F, Hafok M, Vorhauer A, Sabirov I (2006) Adv Eng Mater 8:1046

    Article  CAS  Google Scholar 

  35. Kopylov VI, Chuvil’deev VN (2006) In: Altan BS (ed) Severe plastic deformation: toward bulk production of nanocrystalline materials. Nova Science Publisher, New York

    Google Scholar 

  36. Herzig N, Meyer LW, Halle T, Raschke S (2007) In: Vollertsen F, Yuan S (eds) Proceedings of the second international conference on new forming technology (ICNFT), Bremen, Germany

  37. Zehetbauer MJ (2002) In: Zhu YT, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) TMS annual meeting, Seattle, WA

  38. Zehetbauer MJ, Kohout J (2002) In: Khan AS, Lopez-Pamies O (eds) Ninth international symposium on plasticity and its current applications. NEAT Press, MD

  39. Mingler B, Karnthaler HP, Zehetbauer MJ, Valiev RZ (2001) Mater Sci Eng A 319–321:242

    Google Scholar 

  40. Yapici GG, Beyerlein IJ, Karaman I, Tomé CN (2007) Acta Mater 55:4603

    Article  CAS  Google Scholar 

  41. Richert M, Stüwe HP, Zehetbauer MJ, Richert J, Pippan R, Motz C, Schafler E (2003) Mater Sci Eng A 355:180

    Article  Google Scholar 

  42. Meyer LW (1984) In: Harding J (ed) Institute of physics conference series. Institute of Physics, Oxford

  43. Kendall DP (1972) Trans ASME D 94:207

    Google Scholar 

  44. Zehnder AT, Babinsky E, Palmer T (1998) Exp Mech 38:295

    Article  CAS  Google Scholar 

  45. Chinh NQ, Horvath G, Horita Z, Langdon TG (2004) Acta Mater 52:3555

    Article  CAS  Google Scholar 

  46. Höppel HW, May J, Eisenlohr P, Göken M (2005) Mater Res Adv Tech 96:566

    Google Scholar 

  47. Miyamoto H, Ota K, Mimaki T (2006) Scr Mater 54:1721

    Article  CAS  Google Scholar 

  48. Wang M, Shan A (2008) J Alloys Compd 455:L10

    Article  CAS  Google Scholar 

  49. Sun PL, Cerreta EK, Bingert JF, Gray GT III, Hundley MF (2007) Mater Sci Eng A 464:343

    Article  Google Scholar 

  50. Chang JY, Shan A (2003) Mater Sci Eng A 347:165

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for supporting this work carried out within the framework of Sonderforschungsbereich 692—Hochfeste aluminiumbasierte Leichtbauwerkstoffe für Sicherheitsbauteile. Further thank goes to I. Dögel for his help with the ECAP processing and to A. Schulze for her support with the sample preparation and investigation of the microstructure by STEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hockauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hockauf, M., Meyer, L.W. Work-hardening stages of AA1070 and AA6060 after severe plastic deformation. J Mater Sci 45, 4778–4789 (2010). https://doi.org/10.1007/s10853-010-4595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4595-0

Keywords

Navigation