Skip to main content
Log in

Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mounting evidence is pointing to some emerging novel behaviors of metals with ultrafine-grain (UFG) and/or nanocrystalline (NC) microstructures. One such novel behavior is related to the thermodynamic and kinetic aspects of plastic response in the UFG/NC regime. Two inter-related parameters, viz., the strain rate sensitivity (SRS) and the activation volumes of plastic deformation, are used as fingerprints for the thermodynamics and kinetics of plastic deformation. Changes of these parameters with grain size may indicate transition of plastic deformation mechanisms. Therefore, investigations of these phenomena may bring out new strategies for ingenious design and synthesis of UFG/NC materials with desirable properties. In this article, we present a critical review on the experimental results and theories associated with the SRS of UFG/NC metals with different lattice structures, and the influences on some constitutive responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hall EO (1951) Proce Phys Soc B, Lond 64:747

    Google Scholar 

  2. Petch NJ (1953) J Iron Steel Institute 174:25

    CAS  Google Scholar 

  3. Armstrong RW (1967) In: Rosenfield AR, Hahn GT, Bement ALJ, Jaffee RI (eds) Dislocation dynamics. McGraw-Hill Book Company, NewYork, p 293

  4. Li JCM (1963) Trans Metal Soc AIME 227:239

    CAS  Google Scholar 

  5. Ashby MF (1970) Philos Mag 21:399

    CAS  Google Scholar 

  6. Volpp T, Goring E, Kuschke W-M, Arzt E (1997) Nanostruct Mater 8:855

    CAS  Google Scholar 

  7. El-Sherik AM, Erb U, Palumbo G, Aust KT (1992) Scripta Mater 27:1185

    CAS  Google Scholar 

  8. Schuh CA, Nieh TG, Yamasaki T (2002) Scripta Mater 46:735

    CAS  Google Scholar 

  9. Koch CC, Narayan J (2001) The inverse Hall–Petch effect-Fact or Artifact? presented at Structure and mechanical properties of nanophase materials-theory and computer simulations v.s.experiments. Boston MA, USA

    Google Scholar 

  10. Nieh TG, Wadsworth J (1991) Scripta Metallurgica et Materialia 25:955

    CAS  Google Scholar 

  11. Meyers MA, Mishra A, Benson DJ (2006) Progr Mater Sci 51:427

    CAS  Google Scholar 

  12. Koch CC (2002) Nanostructured materials: processing, properties and potential Norwich, Noyes Publications

    Google Scholar 

  13. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progr Mater Sci 45:103

    CAS  Google Scholar 

  14. Ma E (2006) JOM 58:49

    CAS  Google Scholar 

  15. Carreker RP Jr, Hibbard Jr WR (1953) Acta Metallurgica 1:657

    Google Scholar 

  16. Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Acta Mater 51:5159

    CAS  Google Scholar 

  17. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A 381:71

    Google Scholar 

  18. Lu L, Li SX, Lu K (2001) Scripta Mater 45:1163

    CAS  Google Scholar 

  19. Hollang L, Thiele E, Holste C, Brunner D (2003) “The influence of temperature and strain rate on the flow stress of ECAP nickel,” presented at 2nd International Conference on Nanomaterials by Severe Plastic Deformation

  20. Chen J, Shi YN, Lu K (2005) J Mater Res 20:2955

    CAS  Google Scholar 

  21. Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Scripta Mater 54:1175

    CAS  Google Scholar 

  22. Duhamel C, Guerin S, Hytch MJ, Champion Y (2005) Deformation behavior and strain rate sensitivity of nanostructured materials at moderate temperatures. presented at Mechanical properties of nanostructured materials-experiments and modelling: MRS Symp. Proc San Francisco, CA

    Google Scholar 

  23. Torre FD, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957

    Google Scholar 

  24. Torre FD, Spatig P, Schaublin R, Victoria M (2005) Acta Mater 53:2337

    Google Scholar 

  25. Kumar KS, Van Swygenhoven H, Suresh S (2003) Acta Mater 51:5743

    CAS  Google Scholar 

  26. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    CAS  Google Scholar 

  27. Li YJ, Zeng XH, Blum W (2004) Acta Mater 52:5009

    CAS  Google Scholar 

  28. Li YJ, Valiev RZ, Blum W (2005) Mater Sci Eng A 410–411:451

    Google Scholar 

  29. Wang YM, Ma E (2003) Appl Phys Lett 83:3165

    CAS  Google Scholar 

  30. Wei Q, Jiao T, Mathaudhu SN, Ma E, Hartwig KT, Ramesh KT (2003) Mater Sci Eng A 358:266

    Google Scholar 

  31. Wei Q, Jiao T, Ramesh KT, Ma E (2004) Scripta Mater 50:359

    CAS  Google Scholar 

  32. Wei Q, Jiao T, Ramesh KT, Ma E, Kecskes LJ, Magness L, Dowding RJ, Kazykhanov VU, Valiev RZ (2006) Acta Mater 54:77

    CAS  Google Scholar 

  33. Wei Q, Kecskes LJ, Jiao T, Hartwig KT, Ramesh KT, Ma E (2004) Acta Mater 52:1859

    CAS  Google Scholar 

  34. Wei Q, Ramesh KT, Ma E, Kesckes LJ, Dowding RJ, Kazykhanov VU, Valiev RZ (2005) Appl Phys Lett 86:101907

    Google Scholar 

  35. Jia D, Ramesh KT, Ma E (2003) Acta Mater 51:3495

    CAS  Google Scholar 

  36. Jang D, Atzmon M (2003) J Appl Phys 93:9282

    CAS  Google Scholar 

  37. Rodriguez P (2004) Metall Mater Trans A 35:2697

    Google Scholar 

  38. Rodriguez P, Ray SK (1988) Bull Mater Sci 10:133

    CAS  Google Scholar 

  39. Armstrong RW (1973) J Sci Industrial Res 32:591

    Google Scholar 

  40. Armstrong RW (1997) –531 50:521

    CAS  Google Scholar 

  41. Jia D, Wang YM, Ramesh KT, Ma E, Zhu YT, Valiev RZ (2001) Appl Phys Lett 79:611

    CAS  Google Scholar 

  42. Hwang S, Nishimura C, McCormick PG (2001) Scripta Mater 44:1507

    CAS  Google Scholar 

  43. Zhang X, Wang H, Scattergood RO, Narayan J, Koch CC, Sergueeva AV, Mukherjee A (2002) Acta Mater 50:4823

    CAS  Google Scholar 

  44. Zhang X, Wang H, Scattergood RO, Narayan J, Koch CC, Sergueeva AV, Mukherjee A (2002) Appl Phys Lett 81:823

    CAS  Google Scholar 

  45. Conrad H, Narayan J (2002) Acta Mater 50:5067

    CAS  Google Scholar 

  46. Karimpoor AA, Erb U, Aust KT, PalumboG (2003) Scripta Mater 49:651

    CAS  Google Scholar 

  47. Kocks UF, Argon AS, Ashby MF (1975) Progr Mater Sci 19:1

    Google Scholar 

  48. Chen J, Lu L, Lu K (2006) Scripta Mater 54:1913

    CAS  Google Scholar 

  49. Hoppel HW, May J, Goken M (2004) Adva Eng Mater 6:781

    Google Scholar 

  50. Hoppel HW, May J, Eisenlohr P (2005) Zeit fur Metallkunde 96:566

    Google Scholar 

  51. May J, Hoppel HW, Goken M (2005) Scripta Mater 53:189

    CAS  Google Scholar 

  52. Witkin D, Han BQ, Lavernia EJ (2005) J Mater Eng Perfor 14:519

    CAS  Google Scholar 

  53. Torre FD, Pereloma EV, Davies CHJ (2006) Acta Mater 54:1135

    Google Scholar 

  54. Asaro RJ, Suresh S (2005) Acta Mater 53:3369

    CAS  Google Scholar 

  55. Conrad H (1965) In: Zackey VF (ed) High-strength materials. New York, Wiley, p 436

  56. Dorn JE, Mitchell JB (1965) In: Zackey VF (ed) High-strength materials. New York, John Wiley & Sons, Inc., p 510

  57. Dorn JE, Rajnak S (1964) Trans Metall Soc AIME 230:1052

    Google Scholar 

  58. Gupta I, Li JCM (1970) Metall Trans 1:2323

    CAS  Google Scholar 

  59. Dieter GE (1986) Mechanical metallurgy, 3rd edn. New York, McGraw-Hill

  60. Wang YM, Hamza AV, Ma E (2006) Acta Mater 54:2715

    CAS  Google Scholar 

  61. Follansbee PS (1985) In: ASM Metals Handbook, vol 8: American Society of Metals, p 190

  62. Elmustafa AA, Tambwe MF, Stone DS (2002) “Activation volume analysis of plastic deformation in fcc materials using nanoindentation,” presented at Surface Engineering 2002-Synthesis, Characterization and Applications, MRS Fall Meeting, Boston, MA

  63. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    CAS  Google Scholar 

  64. Gray III GT, Lowe TC, Cady CM, Valiev RZ, Aleksandrov IV (1997) Nanostruct Mater 9:477

    Google Scholar 

  65. Wang YM, Ma E (2004) Appl Phys Lett 85:2750

    CAS  Google Scholar 

  66. Li YJ, Blum W (2005) Phys Status Solidi A 202:R119

    CAS  Google Scholar 

  67. Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521

    CAS  Google Scholar 

  68. Lu L, Schwaiger R, Shan ZW, Dao M, Lu K, Suresh S (2005) Acta Mater 53:2169

    CAS  Google Scholar 

  69. Jiang ZH, Liu XL, Li GY, Jiang Q, Lian JS (2006) Appl Phys Lett 88:143115

    Google Scholar 

  70. Gu CD, Lian JS, Jiang ZH, Jiang Q (2006) Scripta Mater 54:579

    CAS  Google Scholar 

  71. Pan D, Nieh TG, Chen MW (2006) Appl Phys Lett 88:161922

    Google Scholar 

  72. Miyamoto H, Ota K, Mimaki T (2006) Scripta Mater 54:1721

    CAS  Google Scholar 

  73. Hoppel HW, May J, Eisenlohr P, Goken M (2005) Zeit fur Metallkunde 96:566

    Google Scholar 

  74. Kalkman AJ, Verbruggen AH, Radelaar S (2002) J Appl Phys 92:6612

    CAS  Google Scholar 

  75. Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Acta Mater 52:4259

    CAS  Google Scholar 

  76. Zehetbauer M, Seumer V (1993) Acta Metallurgica et Materialia 41:577

    CAS  Google Scholar 

  77. Malow TR, Koch CC, Miraglia PQ, Murty KL (1998) Mater Sci Eng A 252:36

    Google Scholar 

  78. Jang D, Atzmon M (2006) J Appl Phys 99:083504

    Google Scholar 

  79. Wei Q, Zhang H, Schuster BE, Ramesh KT, Valiev RZ, Kecskes LJ, Dowding RJ (2006) Acta Mater 54:4079

    CAS  Google Scholar 

  80. May J, Hoppel HW, Goken M (2006) Mater Sci Forum 503–504:781

    Article  Google Scholar 

  81. Sastry DH, Prasad YVRK, Vasu KI (1970) Metall Trans 1:1827

    CAS  Google Scholar 

  82. Conrad H, Hays L, Schoeck G, Wiedersich H (1961) Acta Metall 9:367

    CAS  Google Scholar 

  83. Trojanova Z, Lukac P, Szaraz Z (2005) Rev Adva Mater Sci 10:437

    CAS  Google Scholar 

  84. Cottrell AH (2002) In: Nabarro FRN, Duesbery MS (eds) Dislocations in solids, vol 11. Elsevier, p vii

  85. Nabarro FRN (1987) Theory of crystal dislocations NewYork, Dover

    Google Scholar 

  86. Cottrell AH, Stokes RJ (1955)Proce Roy Soc A 233

  87. Bailey JE, Hirsch PB (1960) Philosoph Maga 5:485

    CAS  Google Scholar 

  88. Basinski ZS (1959) Philosoph Maga 4:393

    CAS  Google Scholar 

  89. Narutani T, Takamura J (1991) Acta Metallugica et Materialia 39:2037

    CAS  Google Scholar 

  90. Keh AS, Weissmann S (1963) In: Thomas G, Washburn J (eds) Electron microscopy and strength of crystals. New York, Interscience, p 231

    Google Scholar 

  91. Christian JW (1983) Metall Trans A 14:1237

    Google Scholar 

  92. Duesbery MS, Vitek V (1998) Acta Mater 46:1481

    CAS  Google Scholar 

  93. Conrad H (1967) 4 TM Canadian. J Phys 45:581

    CAS  Google Scholar 

  94. Conrad H (2003) Mater Sci Eng A 341:216

    Google Scholar 

  95. Van Swygenhoven H, Caro A (1998) Phys Rev B 58:11246

    CAS  Google Scholar 

  96. Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Phys Rev B 60:22

    CAS  Google Scholar 

  97. Rice JR (1992) J Mech Phys Solids 40:239

    CAS  Google Scholar 

  98. Van Swygenhoven H, Derlet PM, Froseth A (2006) Acta Mater 54:1975

    CAS  Google Scholar 

  99. Cahn JW, Nabarro FRN (2001) Philosoph Maga A 81:1409

    CAS  Google Scholar 

  100. Lian JS, Gu CD, Jiang Q, Jiang ZH (2006) J Appl Phys 99:076103

    Google Scholar 

  101. Zhang H, Schuster BE, Wei Q, Ramesh KT (2006) Scripta Mater 64:181

    Google Scholar 

  102. Schuster BE, Wei Q, Zhang H, Ramesh KT (2006) Applied physics letters 88:103112

    Google Scholar 

  103. Hart EW (1967) Acta Metall 15:351

    CAS  Google Scholar 

  104. Wang YM, Ma E (2004) Acta Mater 52:1699

    CAS  Google Scholar 

  105. Jonas JJ, Holt RA, Coleman CE (1976) Acta Metallurgica 24:911

    Google Scholar 

  106. Tvergaard V, Needleman A (1993) Proce Roy Soc Lond 443A:547

  107. Li HQ, Ebrahimi F (2004) Appl Phys Lett 84:4307

    CAS  Google Scholar 

  108. Iwasaki H, Higashi K, Nieh TG (2004) Scripta Mater 50:395

    CAS  Google Scholar 

  109. Li H, Ebrahimi F (2006) Acta Materialia 54:2877

    CAS  Google Scholar 

  110. McFadden SX, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee A (1999) Nature 398:684

    CAS  Google Scholar 

  111. McFadden SX, Zhilyaev AP, Mishra RS, Mukherjee A (2000) Mater Lett 45:345

    CAS  Google Scholar 

  112. Wei Q, Jia D, Ramesh KT, Ma E (2002) Appl Phys Lett 81:1240

    CAS  Google Scholar 

  113. Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge Press

  114. Magness LS (2002) “An overview of the penetration performances of tungsten and depleted uranium alloy penetrators: ballistic performances and metallographic examinations,” presented at 20th International Symposium on Ballistics, Orlando, Florida

  115. Wei Q, Ramesh KT, Schuster BE, Kecskes LJ, Dowding RJ (2006) JOM 58:40

    CAS  Google Scholar 

Download references

Acknowledgments

The author is indebted to Professors E. Ma and K. T. Ramesh (Johns Hopkins University) for many illuminating discussions. He is also grateful to Dr. T. W. Wright (US Army Research Lab) for his help in the understanding of the physics and mechanics of adiabatic shear banding. Dr. L. Magness has kindly offered assistance to the author with his knowledge about penetrator performance. Some experimental results presented in this article were obtained at JHU-CAMCS through the support by ARL under the ARMAC-RTP Cooperative Agreement #DAAD19-01-2-0003. Many former colleagues participated in the experimental work, and the author would like to extend his gratitude to Drs. T. Jiao, H.T. Zhang, Y. L. Li, L. J. Kecskes, and Mr. B. E. Schuster. Finally, the author is thankful to Dr. Y. T. Zhu for inviting the author to write this article for the special issue of the Journal of Materials Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Q. Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J Mater Sci 42, 1709–1727 (2007). https://doi.org/10.1007/s10853-006-0700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0700-9

Keywords

Navigation