Skip to main content
Log in

Dislocation evolution in interstitial-free steel during fatigue near the endurance limit

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to clear the relationship between dislocation development and endurance limit in fatigued body-centered cubic (BCC) metals, the automotive grade interstitial-free steel (IF steel) was fatigued near the endurance limit in this study. When cycling just below the endurance limit, the dislocation structures are mainly composed of loop patches, moreover, a few large dislocation cells and dislocation walls can also be found, and thus these structures have no significant effect on fatigue failure. However, once cyclic strain slightly exceeds the endurance limit, the small dislocation cells tend to develop near grain boundaries and triple junction of the grains, and which provide a more appropriate structure for crack growth than do large dislocation cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Majumdar S, Bhattacharjee D, Ray KK (2008) Metall Mat Trans A 39:1676

    Article  Google Scholar 

  2. Fuchs HO, Stephens RI (1980) Metal fatigue in engineering. Wiley, New York

    Google Scholar 

  3. Narasaiah N, Chakraborti PC, Maiti R, Ray KK (2005) ISIJ Int 45:127

    Article  CAS  Google Scholar 

  4. Ma BT, Laird C, Leovich Radin A (1990) Mater Sci Eng A 123:159

    Article  Google Scholar 

  5. Liu W, Bayerlein M, Mughrabi H, Day A, Quested PN (1992) Acta Metall Mater 40:1763

    Article  CAS  Google Scholar 

  6. Ma BT, Laird C (1988) Mater Sci Eng A 102:247

    Article  Google Scholar 

  7. Toribio J, Kharin V (2006) J Mater Sci 41:6015. doi:https://doi.org/10.1007/s10853-006-0364-5

    Article  CAS  Google Scholar 

  8. Chen CY, Huang JY, Yeh JJ (2003) J Mater Sci 38:817. doi:https://doi.org/10.1023/A:1021817216519

    Article  CAS  Google Scholar 

  9. Dickson JI, Handfield L, L’espérance G (1986) Mater Sci Eng 81:477

    Article  CAS  Google Scholar 

  10. Huang HL, Ho NJ (2000) Mater Sci Eng A 279:254

    Article  Google Scholar 

  11. Kaneko Y, Ishikawa M, Hashimoto S (2005) Mater Sci Eng A 400–401:418

    Article  Google Scholar 

  12. Huang HL, Ho NJ (2001) Mater Sci Eng A 298:251

    Article  Google Scholar 

  13. Murakami Y (1980) Int J Fatigue 2:23

    Article  CAS  Google Scholar 

  14. Endo T, Murakami Y (1987) J Eng Mater Technol 109:124

    Article  Google Scholar 

  15. Figueroa JC, Bhat SP, Delaveaux R, Murzenski S, Laird C (1981) Acta Metall 29:1667

    Article  CAS  Google Scholar 

  16. Sommer C, Mughrabi H, Lochner D (1998) Acta Mater 46:1537

    Article  CAS  Google Scholar 

  17. Awatani J, Katagiri K, Nakai H (1978) Metall Trans 9A:111

    Article  CAS  Google Scholar 

  18. Ogura T, Masumoto T (1976) Trans Jpn Inst Met 17:733

    Article  CAS  Google Scholar 

  19. Awatani J, Katagiri K, Shiraishi T (1976) Metall Trans 7A:807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Council of ROC under Contract NSC-96-2628-E-110-007. China Steel Corp. is acknowledged for providing the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-Lu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, CC., Ho, NJ. & Huang, HL. Dislocation evolution in interstitial-free steel during fatigue near the endurance limit. J Mater Sci 45, 818–823 (2010). https://doi.org/10.1007/s10853-009-4005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4005-7

Keywords

Navigation