Skip to main content
Log in

On the Micromechanism of Fatigue Damage in an Interstitial-Free Steel Sheet

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The micromechanism of fatigue damage in an interstitial-free (IF) steel sheet has been studied using fully reversed stress amplitudes (Δσ/2). The stress-life (S-N) curve of the steel sheet has been generated, together with a series of interrupted fatigue tests at each of the chosen Δσ/2, to study the progress of fatigue damage in terms of the initiation, growth, and coalescence of the fatigue cracks on the surfaces of the sheet specimens using scanning electron microscopy. The steel sheet possesses a higher endurance limit (0.98 times its yield strength (YS)), as compared to conventional low-carbon steel sheets. This is attributed to (1) the occurrence of nonpropagating microcracks initiating primarily at the inclusions below the endurance limit and (2) a significant delay in the spread of plastic deformation, until Δσ/2 is close to YS. Above the endurance limit, widespread plastic deformation through slip bands promotes the formation of fatigue cracks at the ferrite grain boundaries and occasionally within a ferrite grain body, as well as at inclusions. Fatigue failure is preceded by the significant growth of grain-boundary cracks over and above those at inclusions and the ferrite grain body. A series of grain-boundary cracks link up to form mesocracks, one of which grows to cause the final failure. The predominance of grain-boundary cracks in the process of fatigue failure is attributed to the lesser cohesive strength of the grain boundaries caused by the depletion of interstitials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I. Gupta, D. Bhattacharya: in Metallurgy of Vacuum Degassed Steel Products, R. Pradhan, ed., TMS, Warrendale, PA, 1990, pp. 43–72

    Google Scholar 

  2. Y. Tokunaga: in Metallurgy of Vacuum Degassed Steel Products, R. Pradhan, ed., TMS, Warrendale, PA, 1990, pp. 91–108

    Google Scholar 

  3. M.T. Milan, D. Spinelli, W.W. Bose Filho: Int. J. Fatigue, 2001, vol. 23, pp. 129–33

    Article  CAS  Google Scholar 

  4. G.E. Dieter: Mechanical Metallurgy, SI Metric ed., McGraw Hill Publishing Co., London, 1988, pp. 394–98

    Google Scholar 

  5. ASM Handbook, vol. 19, Fatigue and Fracture, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1996, pp. 96–98

  6. C. Holzapfel, W. Schaf, M. Marx, H. Vehoff, F. Mucklich: Scripta Mater., 2007, vol. 56, pp. 697–700

    Article  CAS  Google Scholar 

  7. ASM Handbook, vol. 19, Fatigue and Fracture, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1996, pp. 153–54

  8. Microscopic Testing Method for the Non-Metallic Inclusions of Steels, Japanese Standard JISG-0555, 1992

  9. S. Majumdar: Tata Search, 2007, vol. 2, pp. 295–98

    Google Scholar 

  10. Standard Test Methods for Tension Testing of Metallic Materials (Metric), ASTM Designation E 8M-04, ASTM, Philadelphia, PA, 2004, pp. 86–109

  11. Standard Test Methods for Tension Testing of Metallic Materials (Metric), ASTM Designation E 8M-04, ASTM, Philadelphia, PA, 2004, pp. 86–109

  12. H.J. Christ, H. Mughrabi, C. Witting-Link: Basic Mechanism in Fatigue of Metals, 1st ed., Elsevier, Amsterdam, 1988, pp. 83–84

    Google Scholar 

  13. M. Zhang, P. Yang, Y. Tan: Int. J. Fatigue, 1999, vol. 21, pp. 823–30

    Article  CAS  Google Scholar 

  14. Y.M. Hu, W. Floer, U. Krupp, H.-J. Christ: Mater. Sci. Eng., A, 2000, vol. 278, pp. 170–80

    CAS  Google Scholar 

  15. R.E. Hook, J.P. Hirth: Acta Metall., 1967, vol. 15, pp. 1099–110

    Article  CAS  Google Scholar 

  16. P. Sittner, V. Paidar: Acta Metall., 1989, vol. 37, pp. 1717–26

    Article  CAS  Google Scholar 

  17. N. Narasaiah, P.C. Chakraborti, R. Maiti, K.K. Ray: ISIJ Int., 2005, vol. 45, pp. 127–32

    Article  CAS  Google Scholar 

  18. U. Essman, U. Gosele, H. Mughrabi: Philos. Mag, 1981, vol. 44, pp. 405–26

    Google Scholar 

  19. A. Hunche, P. Neuman: Acta Metall., 1986, vol. 34, pp. 207–17

    Article  Google Scholar 

  20. M. Long, R. Crooks, H.J. Rack: Acta Mater., 1999, vol. 47, pp. 661–69

    Article  CAS  Google Scholar 

  21. H.O. Fuchs, R.I. Stephens: Metal Fatigue in Engineering, John Wiley & Sons, New York, NY, 1980, pp. 296–98

    Google Scholar 

  22. G.E. Dieter: Mechanical Metallurgy, SI Metric ed., McGraw Hill Publishing Co. Place, London, 1988, pp. 418–19

    Google Scholar 

  23. L. Nian, D. Bai-ping, Z. Hui-jiu: Int. J. Fatigue, 1984, vol. 6 (2), pp. 89–94

    Article  Google Scholar 

  24. P. Lukas, M. Klesnil: Mater. Sci. Eng., 1978, vol. 34, pp. 61–66

    Article  CAS  Google Scholar 

  25. G. Oates, D.V. Wilsons: Acta Metall., 1964, vol. 12, pp. 21–33

    Article  CAS  Google Scholar 

  26. G.E. Dieter: Mechanical Metallurgy, SI Metric Edition, McGraw Hill Publishing Co. Place, London, 1988, pp. 197–98

    Google Scholar 

  27. P.G. Forrest: Fatigue of Metals, 2nd ed., Addison Wesley Publishing Company, Inc., London, 1962, pp. 146–47

    Google Scholar 

  28. J.C. Suits, B. Chalmers: Acta Metall., 1961, vol. 9, pp. 854–60

    Article  CAS  Google Scholar 

  29. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th ed., John Wiley & Sons, Inc., New York, NY, 1995, pp. 529–30

    Google Scholar 

  30. B. Yan: Proc. 37th MWSP Conf., The Iron and Steel Society Inc., Warrendale, PA, 1996, vol. XXXIII, pp. 101–14

  31. F.B. Pickering: Physical Metallurgy and the Design of Steel, Applied Science Publishers Ltd., London, 1978, pp. 18–20

    Google Scholar 

  32. J.W. Cahn: Acta Metall., 1962, vol.10, pp. 789–99

    Article  CAS  Google Scholar 

  33. W.H. Kim, C. Laird: Acta Metall., 1978, vol. 26, pp. 777–87

    Article  CAS  Google Scholar 

  34. J.C. Figueroa, C. Laird: Mater. Sci. Eng., 1983, vol. 60, pp. 45–58

    Article  Google Scholar 

  35. F. Guiu, R. Dubniak, R.C. Edward: Fatigue Fract. Eng. Mater. Struct., 1982, vol. 5, pp. 311–21

    Article  Google Scholar 

  36. H. Mugrhabi, K. Herze, X. Stark: Int. J. Fract., 1981, vol. 17, pp. 193–220

    Article  Google Scholar 

  37. K. Tanaka, Y. Akinawa, In Fatigue 87, EMAS, Warley, UK, p.739–49, 1987

    Google Scholar 

Download references

Acknowledgments

One of the authors (SM) gratefully acknowledges the sponsorship rendered by Tata Steel, Ltd., for pursuing her doctoral studies program. The authors are grateful to Dr. N. Gope (Head, Product Research Group, R&D Division, Tata Steel, Ltd.), for making the experimental facilities available, and to Mr. Vikram Sharma of the R&D Division, Tata Steel, Ltd., for his help in carrying out the scanning electron microscopy work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrabani Majumdar.

Additional information

Manuscript submitted August 21, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, S., Bhattacharjee, D. & Ray, K. On the Micromechanism of Fatigue Damage in an Interstitial-Free Steel Sheet. Metall Mater Trans A 39, 1676–1690 (2008). https://doi.org/10.1007/s11661-008-9537-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9537-y

Keywords

Navigation