Skip to main content
Log in

Damage evolution and energy absorption of E-glass/polypropylene laminates subjected to ballistic impact

  • Commonality of Phenomena in Composite Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-velocity transverse impact of laminated fiber reinforced composites is of interest in military, marine and structural applications. The overall objective of this work was to investigate the behavior of laminated thermoplastic composites of varying thicknesses under high-velocity impact from an experimental and modeling viewpoint. In order to analyze this problem, a series of ballistic impact tests have been performed on plain weave E-glass/polypropylene (E-glass/PP) composites of different thicknesses using 0.30 and 0.50 caliber right-cylinder shaped projectiles. A gas gun with a sabot stripper mechanism was employed to impact the panels. In order to analyze the perforation mechanisms, ballistic limit and damage evaluation, an explicit three-dimensional finite element code LS-DYNA was used. Material model 162, a progressive failure model based on modified Hashin’s criteria, has been assigned to analyze failure of the laminate. The projectile was modeled using Material model 3 (MAT_PLASTIC_KINEMATIC). The laminates and the projectile were meshed using brick elements with single integration points. The impact velocity ranged from 187 to 332 m s−1. Good agreement between the numerical and experimental results was attained in terms of predicting ballistic limit, delamination and energy absorption of E-glass/PP laminate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abrate S (1998) Impact on composite structures. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  2. Goldsmith W, Dharan CKH, Chang H (1995) Int J Impact Eng 32(1):89

    Google Scholar 

  3. Sun CT, Potti SV (1996) Int J Impact Eng 18(3):339. doi:https://doi.org/10.1016/0734-743X(96)89053-1

    Article  Google Scholar 

  4. Morye SS, Hine PJ, Duckett RA, Carr DJ, Ward IM (2000) Compos Sci Technol 60:2631. doi:https://doi.org/10.1016/S0266-3538(00)00139-1

    Article  CAS  Google Scholar 

  5. Department of Defense Test Method Standard V50 Ballistic Test for Armor, MIL-STD-662F, December 18, 1997

  6. Mines RAW, Roach AM, Jones N (1999) Int J Impact Eng 22:561. doi:https://doi.org/10.1016/S0734-743X(99)00019-6

    Article  Google Scholar 

  7. Lee SWR, Sun CT (1993) Compos Sci Technol 49:369. doi:https://doi.org/10.1016/0266-3538(93)90069-S

    Article  CAS  Google Scholar 

  8. Zhu G, Goldsmith W, Dharan CKH (1992) Int J Solids Struct 29(4):399. doi:https://doi.org/10.1016/0020-7683(92)90207-A

    Article  Google Scholar 

  9. Zhu G, Goldsmith W, Dharan CKH (1992) Int J Solids Struct 29(4):421. doi:https://doi.org/10.1016/0020-7683(92)90208-B

    Article  Google Scholar 

  10. Okafor AC, Otieno AW, Dutta A, Rao VS (2001) Compos Struct 54:289. doi:https://doi.org/10.1016/S0263-8223(01)00100-3

    Article  Google Scholar 

  11. Wen HM (2000) Compos Struct 49:321. doi:https://doi.org/10.1016/S0263-8223(00)00064-7

    Article  Google Scholar 

  12. Wen HM (2001) Compos Sci Technol 61:1163. doi:https://doi.org/10.1016/S0266-3538(01)00020-3

    Article  Google Scholar 

  13. Abrate A (1994) Appl Mech Rev 47:517

    Article  Google Scholar 

  14. Choi HY, Chang FK (1990) Impact damage threshold of laminated composite in failure criteria and analysis in dynamic response. AMD, 107, ASME Applied Mechanics Division, November, Dallas, TX, p 31

  15. Davies GAO, Zhang X (1999) Int J Impact Eng 16:149. doi:https://doi.org/10.1016/0734-743X(94)00039-Y

    Article  Google Scholar 

  16. Richardson MOW, Wisheart MJ (1996) Composites 27(A):1123

    Article  Google Scholar 

  17. Cantwell WJ, Morton J (1990) J Comp Sci Tech 38:119

    Article  CAS  Google Scholar 

  18. Mahfuz H, Zhu Y, Haque A, Abutalib A, Vaidya U, Jeelani S, Gama B, Gillespie J, Fink B (2000) Int J Impact Eng. 24:203. doi:https://doi.org/10.1016/S0734-743X(99)00047-0

    Article  Google Scholar 

  19. DeLuca E, Prifti J, Betheney W, Chou SC (1998) J Comp Sci Tech 58:1453. doi:https://doi.org/10.1016/S0266-3538(98)00029-3

    Article  CAS  Google Scholar 

  20. Ladeveze P, LeDantec E (1992) Compos Sci Technol 43:257. doi:https://doi.org/10.1016/0266-3538(92)90097-M

    Article  CAS  Google Scholar 

  21. Allix O, Ladeveze P (1992) Compos Struct 22:235

    Article  Google Scholar 

  22. Johnson AF, Pickett AK, Rozycki P (2001) J Comp Sci Tech 61:2183

    Article  Google Scholar 

  23. Matzenmillar A, Lubliner J, Taylor RL (1995) Mech Mater 20:125

    Article  Google Scholar 

  24. Williams KV, Vaziri R (2001) Comput Struct 79:997. doi:https://doi.org/10.1016/S0045-7949(00)00200-5

    Article  Google Scholar 

  25. Yen C-F (2002) Proceedings of the 7th international LS-DYNA users conference, Detroit, Michigan, p 15

  26. Chan S, Fawaz Z, Behdinan K, Amid R (2007) Compos Struct 77:466. doi:https://doi.org/10.1016/j.compstruct.2005.08.022

    Article  Google Scholar 

  27. Brown K, Brooks R, Warrior N (2005) Proceedings of the 5th European LS-DYNA users conference, Birmingham, UK, May 25–26, 2005

  28. Xiao JR, Gama BA, Gillespie JW (2007) Compos Struct 77:182. doi:https://doi.org/10.1016/j.compstruct.2005.09.001

    Article  Google Scholar 

  29. U.S. Department of Justice. Ballistic resistance of personal body armor. NIJ standard-0101.04, Office of Science and Technology, Washington, DC, June 2001

  30. Altair HyperMesh. Altair Engineering, Inc.1820 E. Big Beaver Troy, MI, 1998

  31. Engineering Technology Associates, Inc., Troy, MI, 2003

  32. Livermore Software Technology Corporation, Livermore, 7374 Las Positas Road, CA, 2003

  33. Hashin Z (1980) J Appl Mech 47:329

    Article  Google Scholar 

  34. LS-DYNA Theoretical Manual, version 970. Livermore Software Tech. Corp., May 1998

Download references

Acknowledgement

The support provided by Office of Naval Research (ONR) under Dr. Yapa Rajapakse, Project Manager is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. K. Vaidya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deka, L.J., Bartus, S.D. & Vaidya, U.K. Damage evolution and energy absorption of E-glass/polypropylene laminates subjected to ballistic impact. J Mater Sci 43, 4399–4410 (2008). https://doi.org/10.1007/s10853-008-2595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2595-0

Keywords

Navigation